RESUMO
BACKGROUND: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.
Assuntos
Ascomicetos/genética , Cacau/microbiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Genômica/métodos , Fosfoinositídeo Fosfolipase C/genética , Ascomicetos/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Filogenia , Conformação ProteicaRESUMO
KEY MESSAGE: Overexpression of a tomato TCTP impacts plant biomass production and performance under stress. These phenotypic alterations were associated with the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. The translationally controlled tumor protein (TCTP) is a multifaceted and highly conserved eukaryotic protein. In plants, despite the existence of functional data implicating this protein in cell proliferation and growth, the detailed physiological roles of many plant TCTPs remain poorly understood. Here we focused on a yet uncharacterized TCTP from tomato (SlTCTP). We show that, when overexpressed in tobacco, SlTCTP may promote plant biomass production and affect performance under salt and osmotic stress. Transcriptomic analysis of the transgenic plants revealed the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. This induced photosynthetic gene expression was paralleled by an increase in the photosynthetic rate and stomatal conductance of the transgenic plants. Moreover, the transcriptional modulation of genes involved in ABA-mediated regulation of stomatal movement was detected. On the other hand, genes playing a pivotal role in ethylene biosynthesis were found to be down-regulated in the transgenic lines, thus suggesting deregulated ethylene accumulation in these plants. Overall, these results point to a role of TCTP in photosynthesis and hormone signaling.
Assuntos
Perfilação da Expressão Gênica/métodos , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genéticaRESUMO
Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.
Assuntos
Arabidopsis , Tecido Adiposo Marrom/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Aspártico , Glutamatos/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 3/metabolismoRESUMO
BACKGROUND: The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated "omics" approaches. RESULTS: The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. CONCLUSIONS: The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.
Assuntos
Ascomicetos/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Ascomicetos/classificação , Ascomicetos/patogenicidade , Cacau/genética , Cacau/microbiologia , Biologia Computacional , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteoma/análise , Proteoma/genéticaRESUMO
Crop diseases caused by fungi constitute one of the most important problems in agriculture, posing a serious threat to food security [1]. To establish infection, phytopathogens interfere with plant immune responses [2, 3]. However, strategies to promote virulence employed by fungal pathogens, especially non-model organisms, remain elusive [4], mainly because fungi are more complex and difficult to study when compared to the better-characterized bacterial pathogens. Equally incomplete is our understanding of the birth of microbial virulence effectors. Here, we show that the cacao pathogen Moniliophthora perniciosa evolved an enzymatically inactive chitinase (MpChi) that functions as a putative pathogenicity factor. MpChi is among the most highly expressed fungal genes during the biotrophic interaction with cacao and encodes a chitinase with mutations that abolish its enzymatic activity. Despite the lack of chitinolytic activity, MpChi retains substrate binding specificity and prevents chitin-triggered immunity by sequestering immunogenic chitin fragments. Remarkably, its sister species M. roreri encodes a second non-orthologous catalytically impaired chitinase with equivalent function. Thus, a class of conserved enzymes independently evolved as putative virulence factors in these fungi. In addition to unveiling a strategy of host immune suppression by fungal pathogens, our results demonstrate that the neofunctionalization of enzymes may be an evolutionary pathway for the rise of new virulence factors in fungi. We anticipate that analogous strategies are likely employed by other pathogens.
Assuntos
Agaricales/fisiologia , Cacau/imunologia , Quitinases/genética , Proteínas Fúngicas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Agaricales/genética , Sequência de Aminoácidos , Cacau/microbiologia , Quitinases/química , Quitinases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Alinhamento de SequênciaRESUMO
The Genosoja consortium is an initiative to integrate different omics research approaches carried out in Brazil. Basically, the aim of the project is to improve the plant by identifying genes involved in responses against stresses that affect domestic production, like drought stress and Asian Rust fungal disease. To do so, the project generated several types of sequence data using different methodologies, most of them sequenced by next generation sequencers. The initial stage of the project is highly dependent on bioinformatics analysis, providing suitable tools and integrated databases. In this work, we describe the main features of the Genosoja web database, including the pipelines to analyze some kinds of data (ESTs, SuperSAGE, microRNAs, subtractive cDNA libraries), as well as web interfaces to access information about soybean gene annotation and expression.
RESUMO
The legume Glycine max (soybean) plays an important economic role in the international commodities market, with a world production of almost 260 million tons for the 2009/2010 harvest. The increase in drought events in the last decade has caused production losses in recent harvests. This fact compels us to understand the drought tolerance mechanisms in soybean, taking into account its variability among commercial and developing cultivars. In order to identify single nucleotide polymorphisms (SNPs) in genes up-regulated during drought stress, we evaluated suppression subtractive libraries (SSH) from two contrasting cultivars upon water deprivation: sensitive (BR 16) and tolerant (Embrapa 48). A total of 2,222 soybean genes were up-regulated in both cultivars. Our method identified more than 6,000 SNPs in tolerant and sensitive Brazilian cultivars in those drought stress related genes. Among these SNPs, 165 (in 127 genes) are positioned at soybean chromosome ends, including transcription factors (MYB, WRKY) related to tolerance to abiotic stress.
RESUMO
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.