Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 400: 115037, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417438

RESUMO

BACKGROUND: In recent years, small animal arterial port-catheter systems have been implemented in rodents with reasonable success. The aim of the current study is to employ the small animal port-catheter system to evaluate the safety of multiple hepatic-artery infusions (HAI) of low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticles to the rat liver. METHODS: Wistar rats underwent surgical placement of indwelling HAI ports. Repeated administrations of PBS or LDL-DHA nanoparticles were performed through the port at baseline and days 3 and 6. Rats were sacrificed on day 9 at which point blood and various organs were collected for histopathology and biochemical analyses. RESULTS: The port-catheter systems were implanted successfully and repeated infusions of PBS or LDL-DHA nanoparticles were tolerated well by all animals over the duration of the study. Measurements of serum liver/renal function tests, glucose and lipid levels did not differ between control and LDL-DHA treated rats. The liver histology was unremarkable in the LDL-DHA treated rats and the expression of hepatic inflammatory regulators (NF-κß, IL-6 and CRP) were similar to control rats. Repeated infusions of LDL-DHA nanoparticles did not alter liver glutathione content or the lipid profile in the treated rats. The DHA extracted by the liver was preferentially metabolized to the anti-inflammatory DHA-derived mediator, protectin DX. CONCLUSION: Our findings indicate that repeated HAI of LDL-DHA nanoparticles is not only well tolerated and safe in the rat, but may also be protective to the liver.


Assuntos
Cateteres de Demora/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Artéria Hepática , Infusões Intra-Arteriais/efeitos adversos , Lipoproteínas LDL/administração & dosagem , Fígado/metabolismo , Nanopartículas/administração & dosagem , Animais , Glicemia/análise , Ácidos Docosa-Hexaenoicos/farmacocinética , Infusões Intra-Arteriais/métodos , Testes de Função Renal , Lipídeos/sangue , Lipoproteínas LDL/farmacocinética , Fígado/irrigação sanguínea , Testes de Função Hepática , Masculino , Ratos Wistar , Distribuição Tecidual
2.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446666

RESUMO

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Serina-Treonina Quinases TOR/metabolismo
3.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824874

RESUMO

Insulin-mTOR signaling drives anabolic growth during organismal development, while its late-life dysregulation may detrimentally contribute to aging and limit lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin INS-7 is drastically over-produced in early life and shortens lifespan in lpd-3 mutants, a C. elegans model of human Alkuraya-Kucinskas syndrome. LPD-3 forms a bridge-like tunnel megaprotein to facilitate phospholipid trafficking to plasma membranes. Lipidomic profiling reveals increased abundance of hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1 (Homolog of Yeast Longevity). Reducing HYL-1 activity decreases INS-7 levels and rescues the lifespan of lpd-3 mutants through insulin receptor/DAF-2 and mTOR/LET-363. LPD3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age in wild type animals. We propose that LPD-3 acts as a megaprotein brake for aging and its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.

4.
Res Sq ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461519

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Most nutrient absorption occurs in the small intestine and is coordinated by hormone-producing intestinal epithelial cells known as enteroendocrine cells (EECs)1. In contrast, the colon mostly reclaims water and electrolytes, and handles the influx of microbially-derived metabolites, including short chain fatty acids (SCFA)2-4. Hormonal responses of small intestinal EECs have been extensively studied but much less in known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. We found that colonic EEC deficiency leads to hyperphagia and obesity. Surprisingly, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment and transfer to germ free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we found that differential glutamate production by intestinal microbiota corresponds to increase appetite due to EEC loss. Finally, we show that colonic glutamate administration can directly increase food intake and activate appetite centers in the central nervous system. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.

5.
Front Oncol ; 12: 1052221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505796

RESUMO

Introduction: Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods: N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion: Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA