Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Acta Neuropathol ; 147(1): 104, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896345

RESUMO

TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein found within ribonucleoprotein granules tethered to lysosomes via annexin A11. TDP-43 protein forms inclusions in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Annexin A11 is also known to form aggregates in ALS cases with pathogenic variants in ANXA11. Annexin A11 aggregation has not been described in sporadic ALS, FTLD-TDP or LATE-NC cases. To explore the relationship between TDP-43 and annexin A11, genetic analysis of 822 autopsy cases was performed to identify rare ANXA11 variants. In addition, an immunohistochemical study of 368 autopsy cases was performed to identify annexin A11 aggregates. Insoluble annexin A11 aggregates which colocalize with TDP-43 inclusions were present in all FTLD-TDP Type C cases. Annexin A11 inclusions were also seen in a small proportion (3-6%) of sporadic and genetic forms of FTLD-TDP types A and B, ALS, and LATE-NC. In addition, we confirm the comingling of annexin A11 and TDP-43 aggregates in an ALS case with the pathogenic ANXA11 p.G38R variant. Finally, we found abundant annexin A11 inclusions as the primary pathologic finding in a case of progressive supranuclear palsy-like frontotemporal dementia with prominent striatal vacuolization due to a novel variant, ANXA11 p.P75S. By immunoblot, FTLD-TDP with annexinopathy and ANXA11 variant cases show accumulation of insoluble ANXA11 including a truncated fragment. These results indicate that annexin A11 forms a diverse and heterogeneous range of aggregates in both sporadic and genetic forms of TDP-43 proteinopathies. In addition, the finding of a primary vacuolar annexinopathy due to ANXA11 p.P75S suggests that annexin A11 aggregation is sufficient to cause neurodegeneration.


Assuntos
Anexinas , Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Humanos , Idoso , Anexinas/genética , Anexinas/metabolismo , Feminino , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteinopatias TDP-43/patologia , Proteinopatias TDP-43/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
2.
Mov Disord ; 39(6): 1065-1070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38610104

RESUMO

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores , Glucosilceramidase , Doença por Corpos de Lewy , Glicoproteínas de Membrana , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Glucosilceramidase/genética , Masculino , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/sangue , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/líquido cefalorraquidiano , Idoso , Pessoa de Meia-Idade , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Genótipo , Heterozigoto , Doença de Gaucher/genética , Doença de Gaucher/sangue , Doença de Gaucher/líquido cefalorraquidiano
3.
Brain ; 146(6): 2557-2569, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36864661

RESUMO

Pathologies that are causative for neurodegenerative disease (ND) are also frequently present in unimpaired, older individuals. In this retrospective study of 1647 autopsied individuals, we report the incidence of 10 pathologies across ND and normal ageing in attempt to clarify which pathological combinations are disease-associated and which are ageing-related. Eight clinically defined groups were examined including unimpaired individuals and those with clinical Alzheimer's disease, mixed dementia, amyotrophic lateral sclerosis, frontotemporal degeneration, multiple system atrophy, probable Lewy body disease or probable tauopathies. Up to seven pathologies were observed concurrently resulting in a heterogeneous mix of 161 pathological combinations. The presence of multiple additive pathologies associated with older age, increasing disease duration, APOE e4 allele and presence of dementia across the clinical groups. Fifteen to 67 combinations occurred in each group, with the unimpaired group defined by 35 combinations. Most combinations occurred at a <5% prevalence including 86 that were present in only one or two individuals. To better understand this heterogeneity, we organized the pathological combinations into five broad categories based on their age-related frequency: (i) 'Ageing only' for the unimpaired group combinations; (ii) 'ND only' if only the expected pathology for that individual's clinical phenotype was present; (iii) 'Other ND' if the expected pathology was not present; (iv) 'ND + ageing' if the expected pathology was present together with ageing-related pathologies at a similar prevalence as the unimpaired group; and (v) 'ND + associated' if the expected pathology was present together with other pathologies either not observed in the unimpaired group or observed at a greater frequency. ND only cases comprised a minority of cases (19-45%) except in the amyotrophic lateral sclerosis (56%) and multiple system atrophy (65%) groups. The ND + ageing category represented 9-28% of each group, but was rare in Alzheimer's disease (1%). ND + associated combinations were common in Alzheimer's disease (58%) and Lewy body disease (37%) and were observed in all groups. The Ageing only and Other ND categories accounted for a minority of individuals in each group. This observed heterogeneity indicates that the total pathological burden in ND is frequently more than a primary expected clinicopathological correlation with a high frequency of additional disease- or age-associated pathologies.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Esclerose Lateral Amiotrófica/patologia , Estudos Retrospectivos
4.
Neuropathol Appl Neurobiol ; 49(1): e12865, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36456471

RESUMO

AIMS: Adult polyglucosan body disease (APBD) is a progressive neurogenetic disorder caused by 1,4-alpha-glucan branching enzyme 1 (GBE1) mutation with an accumulation of polyglucosan bodies (PBs) in the central and peripheral nervous systems as a pathological hallmark. Here, we report two siblings in a family with a GBE1 mutation with prominent frontotemporal lobar degeneration with TAR DNA-binding protein 43 (FTLD-TDP) and ageing-related tau astrogliopathy (ARTAG) copathologies with PBs in the central nervous system. METHODS: Whole-genome sequencing (WGS) followed by Sanger sequencing (SS) was performed on three affected and two unaffected siblings in a pedigree diagnosed with familial frontotemporal dementia. Out of the affected siblings, autopsies were conducted on two cases, and brain samples were used for biochemical and histological analyses. Brain sections were stained with haematoxylin and eosin and immunostained with antibodies against ubiquitin, tau, amyloid ß, α-synuclein, TDP-43 and fused in sarcoma (FUS). RESULTS: A novel single nucleotide deletion in GBE1, c.1280delG, was identified, which is predicted to result in a reading frameshift, p.Gly427Glufs*9. This variant segregated with disease in the family, is absent from population databases and is predicted to cause loss of function, a known genetic mechanism for APBD. The affected siblings showed a greater than 50% decrease in GBE protein levels. Immunohistochemical analysis revealed widespread FTLD-TDP (type A) and ARTAG pathologies as well as PBs in the brains of two affected siblings for whom an autopsy was performed. CONCLUSIONS: This is the first report of a family with several individuals with a FTD clinical phenotype and underlying copathologies of APBD, FTLD-TDP and ARTAG with a segregating GBE1 loss-of-function mutation in affected siblings. The finding of copathologies of APBD and FTLD-TDP suggests these processes may share a disease mechanism resulting from this GBE1 mutation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sistema da Enzima Desramificadora do Glicogênio , Humanos , Demência Frontotemporal/patologia , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/patologia , Mutação , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo
5.
Ann Neurol ; 92(2): 255-269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593028

RESUMO

OBJECTIVE: Using a multi-cohort, discovery-replication-validation design, we sought new plasma biomarkers that predict which individuals with Parkinson's disease (PD) will experience cognitive decline. METHODS: In 108 discovery cohort PD individuals and 83 replication cohort PD individuals, we measured 940 plasma proteins on an aptamer-based platform. Using proteins associated with subsequent cognitive decline in both cohorts, we trained a logistic regression model to predict which patients with PD showed fast (> = 1 point drop/year on Montreal Cognitive Assessment [MoCA]) versus slow (< 1 point drop/year on MoCA) cognitive decline in the discovery cohort, testing it in the replication cohort. We developed alternate assays for the top 3 proteins and confirmed their ability to predict cognitive decline - defined by change in MoCA or development of incident mild cognitive impairment (MCI) or dementia - in a validation cohort of 118 individuals with PD. We investigated the top plasma biomarker for causal influence by Mendelian randomization (MR). RESULTS: A model with only 3 proteins (melanoma inhibitory activity protein [MIA], C-reactive protein [CRP], and albumin) separated fast versus slow cognitive decline subgroups with an area under the curve (AUC) of 0.80 in the validation cohort. The individuals with PD in the validation cohort in the top quartile of risk for cognitive decline based on this model were 4.4 times more likely to develop incident MCI or dementia than those in the lowest quartile. Genotypes at MIA single nucleotide polymorphism (SNP) rs2233154 associated with MIA levels and cognitive decline, providing evidence for MIA's causal influence. CONCLUSIONS: An easily obtained plasma-based predictor identifies individuals with PD at risk for cognitive decline. MIA may participate causally in development of cognitive decline. ANN NEUROL 2022;92:255-269.


Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Albuminas , Biomarcadores , Proteína C-Reativa/química , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Demência/complicações , Proteínas da Matriz Extracelular/sangue , Humanos , Proteínas de Neoplasias/sangue , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/psicologia , Albumina Sérica/química
6.
Ann Neurol ; 90(1): 76-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938021

RESUMO

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Penetrância
7.
Acta Neuropathol ; 143(3): 363-382, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997851

RESUMO

Frontotemporal lobar degeneration (FTLD) with either tau (FTLD-tau) or TDP-43 (FTLD-TDP) inclusions are distinct proteinopathies that frequently cause similar frontotemporal dementia (FTD) clinical syndromes. FTD syndromes often display macroscopic signatures of neurodegeneration at the level of regions and networks, but it is unclear if subregional laminar pathology display patterns unique to proteinopathy or clinical syndrome. We hypothesized that FTLD-tau and FTLD-TDP accumulate pathology in relatively distinct cortical layers independent of clinical syndrome, with greater involvement of lower layers in FTLD-tau. The current study examined 170 patients with either FTLD-tau (n = 73) or FTLD-TDP (n = 97) spanning dementia and motor phenotypes in the FTD spectrum. We digitally measured the percent area occupied by tau and TDP-43 pathology in upper layers (I-III), lower layers (IV-VI), and juxtacortical white matter (WM) from isocortical regions in both hemispheres where available. Linear mixed-effects models compared ratios of upper to lower layer pathology between FTLD groups and investigated relationships with regions, WM pathology, and global cognitive impairment while adjusting for demographics. We found lower ratios of layer pathology in FTLD-tau and higher ratios of layer pathology in FTLD-TDP, reflecting lower layer-predominant tau pathology and upper layer-predominant TDP-43 pathology, respectively (p < 0.001). FTLD-tau displayed lower ratios of layer pathology related to greater WM tau pathology (p = 0.002) and to earlier involved/severe pathology regions (p = 0.007). In contrast, FTLD-TDP displayed higher ratios of layer pathology not related to either WM pathology or regional severity. Greater cognitive impairment was associated with higher ratios of layer pathology in FTLD-tau (p = 0.018), but was not related to ratios of layer pathology in FTLD-TDP. Lower layer-predominant tau pathology and upper layer-predominant TDP-43 pathology are proteinopathy-specific, regardless of clinical syndromes or regional networks that define these syndromes. Thus, patterns of laminar change may provide a useful anatomical framework for investigating how degeneration of select cells and corresponding laminar circuits influence large-scale networks and clinical symptomology in FTLD.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Substância Branca , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Humanos , Substância Branca/patologia , Proteínas tau/metabolismo
8.
Acta Neuropathol ; 143(1): 15-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854996

RESUMO

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Doença por Corpos de Lewy/patologia , Proteinopatias TDP-43/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Feminino , Humanos , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/genética , Masculino , Pessoa de Meia-Idade , Proteinopatias TDP-43/complicações , Proteinopatias TDP-43/genética
9.
Acta Neuropathol ; 144(6): 1085-1102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36112222

RESUMO

Alzheimer's disease (AD) has multiple clinically and pathologically defined subtypes where the underlying causes of such heterogeneity are not well established. Rare TREM2 variants confer significantly increased risk for clinical AD in addition to other neurodegenerative disease clinical phenotypes. Whether TREM2 variants are associated with atypical clinical or pathologically defined subtypes of AD is not known. We studied here the clinical and pathological features associated with TREM2 risk variants in an autopsy-confirmed cohort. TREM2 variant cases were more frequently associated with non-amnestic clinical syndromes. Pathologically, TREM2 variant cases were associated with an atypical distribution of neurofibrillary tangle density with significantly lower hippocampal NFT burden relative to neocortical NFT accumulation. In addition, NFT density but not amyloid burden was associated with an increase of dystrophic microglia. TREM2 variant cases were not associated with an increased prevalence, extent, or severity of co-pathologies. These clinicopathological features suggest that TREM2 variants contribute to clinical and pathologic AD heterogeneity by altering the distribution of neurofibrillary degeneration and tau-dependent microglial dystrophy, resulting in hippocampal-sparing and non-amnestic AD phenotypes.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Emaranhados Neurofibrilares/patologia , Hipocampo/patologia , Microglia/patologia , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
10.
Acta Neuropathol ; 144(6): 1065-1084, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066634

RESUMO

Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Tauopatias , Humanos , Proteínas tau/genética , Tauopatias/patologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Demência Frontotemporal/patologia , Isoformas de Proteínas , Neurônios/patologia
11.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997131

RESUMO

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Atrofias Olivopontocerebelares , Degeneração Estriatonigral , Autoanticorpos , Autopsia , Estudo de Associação Genômica Ampla , Humanos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo
12.
Brain ; 144(3): 953-962, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33449993

RESUMO

Cerebral amyloid angiopathy (CAA), limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) and Lewy bodies occur in the absence of clinical and neuropathological Alzheimer's disease, but their prevalence and severity dramatically increase in Alzheimer's disease. To investigate how plaques, tangles, age and apolipoprotein E ε4 (APOE ε4) interact with co-pathologies in Alzheimer's disease, we analysed 522 participants ≥50 years of age with and without dementia from the Center for Neurodegenerative Disease Research (CNDR) autopsy program and 1340 participants in the National Alzheimer's Coordinating Center (NACC) database. Consensus criteria were applied for Alzheimer's disease using amyloid phase and Braak stage. Co-pathology was staged for CAA (neocortical, allocortical, and subcortical), LATE-NC (amygdala, hippocampal, and cortical), and Lewy bodies (brainstem, limbic, neocortical, and amygdala predominant). APOE genotype was determined for all CNDR participants. Ordinal logistic regression was performed to quantify the effect of independent variables on the odds of having a higher stage after checking the proportional odds assumption. We found that without dementia, increasing age associated with all pathologies including CAA (odds ratio 1.63, 95% confidence interval 1.38-1.94, P < 0.01), LATE-NC (1.48, 1.16-1.88, P < 0.01), and Lewy bodies (1.45, 1.15-1.83, P < 0.01), but APOE ε4 only associated with CAA (4.80, 2.16-10.68, P < 0.01). With dementia, increasing age associated with LATE-NC (1.30, 1.15-1.46, P < 0.01), while Lewy bodies associated with younger ages (0.90, 0.81-1.00, P = 0.04), and APOE ε4 only associated with CAA (2.36, 1.52-3.65, P < 0.01). A longer disease course only associated with LATE-NC (1.06, 1.01-1.11, P = 0.01). Dementia in the NACC cohort associated with the second and third stages of CAA (2.23, 1.50-3.30, P < 0.01), LATE-NC (5.24, 3.11-8.83, P < 0.01), and Lewy bodies (2.41, 1.51-3.84, P < 0.01). Pathologically, increased Braak stage associated with CAA (5.07, 2.77-9.28, P < 0.01), LATE-NC (5.54, 2.33-13.15, P < 0.01), and Lewy bodies (4.76, 2.07-10.95, P < 0.01). Increased amyloid phase associated with CAA (2.27, 1.07-4.80, P = 0.03) and Lewy bodies (6.09, 1.66-22.33, P = 0.01). In summary, we describe widespread distributions of CAA, LATE-NC and Lewy bodies that progressively accumulate alongside plaques and tangles in Alzheimer's disease dementia. CAA interacted with plaques and tangles especially in APOE ε4 positive individuals; LATE-NC associated with tangles later in the disease course; most Lewy bodies associated with moderate to severe plaques and tangles.


Assuntos
Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/epidemiologia , Doença por Corpos de Lewy/epidemiologia , Proteinopatias TDP-43/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
13.
Acta Neuropathol ; 142(2): 243-257, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33950293

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neuropathologic subtypes of frontotemporal lobar degeneration with tau inclusions (FTLD-tau), primary tauopathies in which intracellular tau aggregation contributes to neurodegeneration. Gosuranemab (BIIB092) is a humanized monoclonal antibody that binds to N-terminal tau. While Gosuranemab passive immunotherapy trials for PSP failed to demonstrate clinical benefit, Gosuranemab reduced N-terminal tau in the cerebrospinal fluid of transgenic mouse models and PSP patients. However, the neuropathologic sequelae of Gosuranemab have not been described. In this present study, we examined the brain tissue of three individuals who received Gosuranemab. Post-mortem human brain tissues were studied using immunohistochemistry to identify astrocytic and microglial differences between immunized cases and a cohort of unimmunized PSP, CBD and aging controls. Gosuranemab immunotherapy was not associated with clearance of neuropathologic FTLD-tau inclusions. However, treatment-associated changes were observed including the presence of perivascular vesicular astrocytes (PVA) with tau accumulation within lysosomes. PVAs were morphologically and immunophenotypically distinct from the tufted astrocytes seen in PSP, granular fuzzy astrocytes (GFA) seen in aging, and astrocytic plaques seen in CBD. Additional glial responses included increased reactive gliosis consisting of bushy astrocytosis and accumulation of rod microglia. Together, these neuropathologic findings suggest that Gosuranemab may be associated with a glial response including accumulation of tau within astrocytic lysosomes.


Assuntos
Degeneração Lobar Frontotemporal/tratamento farmacológico , Lisossomos/metabolismo , Neuroglia/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/imunologia , Neuroglia/patologia , Neurônios/patologia , Tauopatias/imunologia , Tauopatias/patologia , Proteínas tau/imunologia
14.
Acta Neuropathol ; 142(4): 629-642, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152475

RESUMO

The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well understood. Here, we investigated the influence of genotypes at TMEM106B, a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72, a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)-allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. To elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B, to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.


Assuntos
Doença de Alzheimer/etiologia , Proteína C9orf72/fisiologia , Proteínas de Ligação a DNA/fisiologia , Doença por Corpos de Lewy/etiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteinopatias TDP-43/etiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Estudos de Coortes , Feminino , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Proteinopatias TDP-43/patologia
15.
Mov Disord ; 36(1): 106-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002231

RESUMO

BACKGROUND: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. OBJECTIVES: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. METHODS: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. RESULTS: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. CONCLUSIONS: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Atividades Cotidianas , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Masculino , Doença de Parkinson/epidemiologia
16.
Brain ; 143(9): 2844-2857, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830216

RESUMO

TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.


Assuntos
Degeneração Lobar Frontotemporal/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Proteinopatias TDP-43/diagnóstico por imagem , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Sistema Límbico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteinopatias TDP-43/fisiopatologia
17.
Ann Neurol ; 85(6): 801-811, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973966

RESUMO

OBJECTIVE: Common variants near TMEM106B associate with risk of developing frontotemporal dementia (FTD). Emerging evidence suggests a role for TMEM106B in neurodegenerative processes beyond FTD. We evaluate the effect of TMEM106B genotype on cognitive decline across multiple neurogenerative diseases. METHODS: We longitudinally followed 870 subjects with diagnoses of Parkinson disease (PD; n = 179), FTD (n = 179), Alzheimer disease (AD; n = 300), memory-predominant mild cognitive impairment (MCI; n = 75), or neurologically normal control subjects (NC; n = 137) at the University of Pennsylvania (UPenn). All participants had annual Mini-Mental State Examination (MMSE; median follow-up duration = 3.0 years) and were genotyped at TMEM106B index single nucleotide polymorphism rs1990622. Genotype effects on cognition were confirmed by extending analyses to additional cognitive instruments (Mattis Dementia Rating Scale-2 [DRS-2] and Montreal Cognitive Assessment [MoCA]) and to an international validation cohort (Parkinson's Progression Markers Initiative [PPMI], N = 371). RESULTS: The TMEM106B rs1990622T allele, linked to increased risk of FTD, associated with greater MMSE decline over time in PD subjects but not in AD or MCI subjects. For FTD subjects, rs1990622T associated with more rapid decrease in MMSE only under the minor-allele, rs1990622C , dominant model. Among PD patients, rs1990622T carriers from the UPenn cohort demonstrated more rapid longitudinal decline in DRS-2 scores. Finally, in the PPMI cohort, TMEM106B risk allele carriers demonstrated more rapid longitudinal decline in MoCA scores. INTERPRETATION: Irrespective of cognitive instrument or cohort assessed, TMEM106B acts as a genetic modifier for cognitive trajectory in PD. Our results implicate lysosomal dysfunction in the pathogenesis of cognitive decline in 2 different proteinopathies. ANN NEUROL 2019;85:801-811.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/genética , Demência Frontotemporal/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Idoso , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Feminino , Seguimentos , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/psicologia , Humanos , Estudos Longitudinais , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/diagnóstico , Doença de Parkinson/psicologia
18.
Acta Neuropathol ; 140(4): 477-493, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32840654

RESUMO

Beta-amyloid deposition is a defining feature of Alzheimer's disease (AD). How genetic risk factors, like APOE and TREM2, intersect with cellular responses to beta-amyloid in human tissues is not fully understood. Using single-nucleus RNA sequencing of postmortem human brain with varied APOE and TREM2 genotypes and neuropathology, we identified distinct microglia subpopulations, including a subpopulation of CD163-positive amyloid-responsive microglia (ARM) that are depleted in cases with APOE and TREM2 risk variants. We validated our single-nucleus RNA sequencing findings in an expanded cohort of AD cases, demonstrating that APOE and TREM2 risk variants are associated with a significant reduction in CD163-positive amyloid-responsive microglia. Our results showcase the diverse microglial response in AD and underscore how genetic risk factors influence cellular responses to underlying pathologies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Glicoproteínas de Membrana/genética , Microglia/patologia , Receptores Imunológicos/genética , Peptídeos beta-Amiloides/metabolismo , Humanos
19.
Acta Neuropathol ; 140(4): 449-461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749525

RESUMO

Growing evidence suggests overlap between Alzheimer's disease (AD) and Parkinson's disease (PD) pathophysiology in a subset of patients. Indeed, 50-80% of autopsy cases with a primary clinicopathological diagnosis of Lewy body disease (LBD)-most commonly manifesting during life as PD-have concomitant amyloid-beta and tau pathology, the defining pathologies of AD. Here we evaluated common genetic variants in genome-wide association with AD as predictors of concomitant AD pathology in the brains of people with a primary clinicopathological diagnosis of PD or Dementia with Lewy Bodies (DLB), diseases both characterized by neuronal Lewy bodies. In the first stage of our study, 127 consecutive autopsy-confirmed cases of PD or DLB from a single center were assessed for AD neuropathological change (ADNC), and these same cases were genotyped at 20 single nucleotide polymorphisms (SNPs) found by genome-wide association study to associate with risk for AD. In these 127 training set individuals, we developed a logistic regression model predicting the presence of ADNC, using backward stepwise regression for model selection and tenfold cross-validation to estimate performance. The best-fit model generated a risk score for ADNC (ADNC-RS) based on age at disease onset and genotype at three SNPs (APOE, BIN1, and SORL1 loci), with an area under the receiver operating curve (AUC) of 0.751 in our training set. In the replication stage of our study, we assessed model performance in a separate test set of the next 81 individuals genotyped in our center. In the test set, the AUC was 0.781, and individuals with ADNC-RS in the top quintile had four-fold increased likelihood of having AD pathology at autopsy compared with those in each of the lowest two quintiles. Finally, in the validation stage of our study, we applied our ADNC-RS model to 70 LBD individuals from 20 Alzheimer's Disease Research Centers (ADRC) whose autopsy and genetic data were available in the National Alzheimer's Coordinating Center (NACC) database. In this validation set, the AUC was 0.754. Thus, in patients with autopsy-confirmed PD or DLB, a simple model incorporating three AD-risk SNPs and age at disease onset substantially enriches for concomitant AD pathology at autopsy, with implications for identifying LBD patients in which targeting amyloid-beta or tau is a therapeutic strategy.


Assuntos
Doença por Corpos de Lewy/patologia , Emaranhados Neurofibrilares/patologia , Doença de Parkinson/patologia , Placa Amiloide/patologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Genótipo , Humanos , Doença por Corpos de Lewy/genética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
20.
Acta Neuropathol ; 140(5): 675-693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32804255

RESUMO

Neurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer's disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP. We examined 280 patients including FTLD-tau (n = 94), FTLD-TDP (n = 135), and two reference groups: clinical/pathological AD (n = 32) and healthy controls (HC, n = 19). Adjacent sections of pons tissue containing the LC were immunostained for phosphorylated TDP-43 (1D3-p409/410), hyperphosphorylated tau (PHF-1), and tyrosine hydroxylase (TH) to examine neuromelanin-containing noradrenergic neurons. Blinded to clinical and pathologic diagnoses, we semi-quantitatively scored inclusions of tau and TDP-43 both inside LC neuronal somas and in surrounding neuropil. We also digitally measured the percent area occupied of neuromelanin inside of TH-positive LC neurons and in surrounding neuropil to calculate a ratio of extracellular-to-intracellular neuromelanin as an objective composite measure of neurodegeneration. We found that LC tau burden in FTLD-tau was greater than LC TDP-43 burden in FTLD-TDP (z = - 11.38, p < 0.0001). Digital measures of LC neurodegeneration in FTLD-tau were comparable to AD (z = - 1.84, p > 0.05) but greater than FTLD-TDP (z = - 3.85, p < 0.0001) and HC (z = - 4.12, p < 0.0001). Both tau burden and neurodegeneration were consistently elevated in the LC across pathologic and clinical subgroups of FTLD-tau compared to FTLD-TDP subgroups. Moreover, LC tau burden positively correlated with neurodegeneration in the total FTLD group (rho = 0.24, p = 0.001), while TDP-43 burden did not correlate with LC neurodegeneration in FTLD-TDP (rho = - 0.01, p = 0.90). These findings suggest that patterns of disease propagation across all tauopathies include prominent LC tau and neurodegeneration that are relatively distinct from the minimal degenerative changes to the LC in FTLD-TDP and HC. Antemortem detection of LC neurodegeneration and/or function could potentially improve antemortem differentiation of underlying FTLD tauopathies from clinically similar FTLD-TDP proteinopathies.


Assuntos
Demência Frontotemporal/patologia , Locus Cerúleo/patologia , Tauopatias/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA