RESUMO
INTRODUCTION: Amanita phalloides poisoning is a serious health problem with a mortality rate of 10-40%. Poisonings are characterized by severe liver and kidney toxicity. The effect of Amanita phalloides poisonings on hematological parameters has not been systematically evaluated thus far. METHODS: Patients with suspected Amanita phalloides poisonings were retrospectively selected from the hospital database of the University Medical Center Groningen (UMCG). Medical data-including demographics; liver, kidney, and blood parameters; treatment; and outcomes-were collected. The severity of the poisoning was scored using the poison severity score. RESULTS: Twenty-eight patients were identified who were admitted to the UMCG with suspected Amanita phalloides poisoning between 1994 and 2022. A time-dependent decrease was observed for hemoglobin and hematocrit concentrations, leukocytes, and platelets. Six out of twenty-eight patients developed acute liver failure (ALF). Patients with ALF showed a higher increase in liver enzymes, international normalized ratios, and PSS compared to patients without ALF. Conversely, hemoglobin and platelet numbers were decreased even further in these patients. Three out of six patients with ALF died and one patient received a liver transplant. CONCLUSION: Our study shows that Amanita phalloides poisonings may be associated with hematotoxicity in patients. The quantification of hematological parameters is of relevance in intoxicated patients, especially in those with ALF.
Assuntos
Amanita , Falência Hepática Aguda , Intoxicação Alimentar por Cogumelos , Humanos , Estudos Retrospectivos , Falência Hepática Aguda/induzido quimicamente , Hemoglobinas , Intoxicação Alimentar por Cogumelos/terapiaRESUMO
Pharmacogenomics (PGx) can provide optimized treatment to individual patients while potentially reducing healthcare costs. However, widespread implementation remains absent. We performed a pilot study of PGx screening in Dutch outpatient hospital care to identify the barriers and facilitators to implementation experienced by patients (n = 165), pharmacists (n = 58) and physicians (n = 21). Our results indeed suggest that the current practical experience of healthcare practitioners with PGx is limited, that proper education is necessary, that patients want to know the exact implications of the results, that healthcare practitioners heavily rely on their computer systems, that healthcare practitioners encounter practical problems in the systems used, and a new barrier was identified, namely that there is an unclear allocation of responsibilities between healthcare practitioners about who should discuss PGx with patients and apply PGx results in healthcare. We observed a positive attitude toward PGx among all the stakeholders in our study, and among patients, this was independent of the occurrence of drug-gene interactions during their treatment. Facilitators included the availability of and adherence to Dutch Pharmacogenetics Working Group guidelines. While clinical decision support (CDS) is available and valued in our medical center, the lack of availability of CDS may be an important barrier within Dutch healthcare in general.