Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(3): 708-711, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723569

RESUMO

Time-resolved terahertz (THz) spectroscopy has been shown as a powerful technique to non-invasively determine the charge carrier properties in photoexcited semiconductors. However, the long wavelengths of terahertz radiation reduce the applicability of this technique to large samples. Using THz near-field microscopy, we show THz measurements of the lifetime of 2D single exfoliated microcrystals of transition metal dichalcogenides (WS2). The increased spatial resolution of THz near-field microscopy allows spatial mapping of the evolution of the carrier lifetime, revealing Auger assisted surface defect recombination as the dominant recombination channel. THz near-field microscopy allows for the non-invasive and high-resolution investigation of material properties of 2D semiconductors relevant for nanoelectronic and optoelectronic applications.

2.
ACS Photonics ; 8(10): 3010-3016, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692900

RESUMO

Bound states in the continuum (BICs) represent a new paradigm in photonics due to the full suppression of radiation losses. However, this suppression has also hampered the direct observation of them. By using a double terahertz (THz) near-field technique that allows the local excitation and detection of the THz amplitude, we are able to map for the first time the electromagnetic field amplitude and phase of BICs over extended areas, unveiling the field-symmetry protection that suppresses the far-field radiation. This investigation, done for metasurfaces of dimer scatterers, reveals the in-plane extension and formation of BICs with antisymmetric phases, in agreement with coupled-dipole calculations. By displacing the scatterers, we show experimentally that a mirror symmetry is not a necessary condition for a BIC formation. Only π-rotation symmetry is required, making BICs exceptionally robust to structural changes. This work makes the local field of BICs experimentally accessible, which is crucial for the engineering of cavities with infinite lifetimes.

3.
Nat Commun ; 12(1): 5844, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615880

RESUMO

The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism. Here, we use multiphonon Raman scattering and THz time-domain spectroscopy to investigate Fröhlich coupling in CsPbBr3. We identify a longitudinal optical phonon mode that dominates the interaction, and surmise that this mode effectively defines exciton-phonon scattering in CsPbBr3, and possibly similar materials. It is additionally revealed that the observed strength of the Fröhlich interaction is significantly higher than the expected intrinsic value for CsPbBr3, and is likely enhanced by carrier localization in the colloidal perovskite nanocrystals. Our experiments also unearthed a dipole-related dielectric relaxation mechanism which may impact transport properties.

4.
ACS Nano ; 10(12): 11414-11419, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024324

RESUMO

Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm2 under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

5.
Nat Commun ; 6: 7635, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154986

RESUMO

In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii-Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA