Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Biochem Biophys ; 727: 109317, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709965

RESUMO

Human 15-lipoxygenases (LOX) are critical enzymes in the inflammatory process, producing various pro-resolution molecules, such as lipoxins and resolvins, but the exact role each of the two 15-LOXs in these biosynthetic pathways remains elusive. Previously, it was observed that h15-LOX-1 reacted with 5S-HETE in a non-canonical manner, producing primarily the 5S,12S-diHETE product. To determine the active site constraints of h15-LOX-1 in achieving this reactivity, amino acids involved in the fatty acid binding were investigated. It was observed that R402L did not have a large effect on 5S-HETE catalysis, but F414 appeared to π-π stack with 5S-HETE, as seen with AA binding, indicating an aromatic interaction between a double bond of 5S-HETE and F414. Decreasing the size of F352 and I417 shifted oxygenation of 5S-HETE to C12, while increasing the size of these residues reversed the positional specificity of 5S-HETE to C15. Mutants at these locations demonstrated a similar effect with 7S-HDHA as the substrate, indicating that the depth of the active site regulates product specificity for both substrates. Together, these data indicate that of the three regions proposed to control positional specificity, π-π stacking and active site cavity depth are the primary determinants of positional specificity with 5S-HETE and h15-LOX-1. Finally, the altered reactivity of h15-LOX-1 was also observed with 5S-HEPE, producing 5S,12S-diHEPE instead of 5S,15S-diHEPE (aka resolvin E4 (RvE4). However, h15-LOX-2 efficiently produces 5S,15S-diHEPE from 5S-HEPE. This result is important with respect to the biosynthesis of the RvE4 since it obscures which LOX isozyme is involved in its biosynthesis. Future work detailing the expression levels of the lipoxygenase isoforms in immune cells and selective inhibition during the inflammatory response will be required for a comprehensive understanding of RvE4 biosynthesis.


Assuntos
Araquidonato 15-Lipoxigenase , Ácidos Docosa-Hexaenoicos , Lipoxigenase , Humanos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos , Ácidos Hidroxieicosatetraenoicos/química , Lipoxigenase/genética , Receptores Depuradores Classe E
2.
Clin Infect Dis ; 67(suppl_1): S121-S126, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376092

RESUMO

Background: Global polio eradication efforts rely in part on molecular methods of detecting polioviruses, both wild and vaccine strains, from human and environmental samples. Previous assays used for detection of Sabin oral polio vaccine (OPV) in fecal samples have been labor and time intensive and vary in their sensitivity and specificity. Methods: We developed a high-throughput, multiplex reverse-transcription quantitative polymerase chain reaction assay able to detect all 3 OPV strains in fecal samples. The assay used a KingFisher Duo Prime system for viral RNA isolation and extraction. Positive samples were retested and Sanger sequenced for verification of Sabin serotype identity. Results: The 95% lower limit of detection was determined to be 3 copies per reaction for Sabin 1 and 3 and 4 copies per reaction for Sabin 2, with no cross-reactivity between the 3 serotypes and their primers. A total of 554 samples (3.6%) were positive, with 304 positive samples (54.9%) containing >1 serotype. Of the positive samples, 476 (85.9%) contained enough RNA to be sequenced, and of these all sequences were Sabin serotypes. The previous assay we used could process 48 samples in a 10-hour period, whereas the new assay processed >100 samples in 6 hours. Conclusions: The new high-throughput, multiplex reverse-transcription quantitative polymerase chain reaction assay allowed for sensitive and specific detection of OPV serotypes while greatly decreasing sample handling and processing time. We were able to sequence 72.4% of the 210 positive samples in the cycle threshold range of 35-37.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Poliomielite/transmissão , Poliovirus/isolamento & purificação , Pré-Escolar , Reações Cruzadas , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Limite de Detecção , México/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliomielite/virologia , Poliovirus/genética , Poliovirus/imunologia , Vacina Antipólio Oral , Sensibilidade e Especificidade , Análise de Sequência de DNA , Sorogrupo
3.
Clin Infect Dis ; 67(suppl_1): S98-S102, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376093

RESUMO

Background: Currently, the primary mechanism for poliovirus detection is acute flaccid paralysis (AFP) surveillance, with environmental sampling serving as a complement. However, as AFP cases drop, environmental surveillance will become increasingly critical for poliovirus detection. Mexico provides a natural environment to study oral polio vaccine (OPV) transmission, as it provides routine injected polio vaccine immunization and biannual OPV campaigns in February and May. Methods: As part of a study of OPV transmission in which 155 children were vaccinated with OPV, monthly sewage samples were collected from rivers leading from 3 indigenous Mexican villages (Capoluca, Campo Grande, and Tuxpanguillo) from February to May 2015. Samples were also collected from October 2015 to October 2017, during which time there were standard OPV campaigns. Samples were analyzed for the presence of OPV serotypes, using a real-time qualitative polymerase chain reaction assay capable of detecting as few as 9, 12, and 10 copies/100 µL of viral ribonucleic acid for OPV serotypes 1, 2, and 3 (OPV-1, -2, and -3), respectively. Included here are 54 samples, taken up to November 2016. Results: Of the 54 samples, 13 (24%) were positive for OPV. After the vaccination of 155 children in February 2015, OPV was found 2 months after vaccination. After unrestricted OPV administration in February 2016, OPV was detected in sewage up to 8 months after vaccination. OPV-3 was found in 11 of the 13 positive samples (85%), OPV-2 was found in 3 positive samples (23%), and OPV-1 was found in 1 sample (8%). Conclusions: OPV can be detected even when small amounts of the vaccine are introduced into a community, as shown by OPV-positive sewage samples even when only 155 children were vaccinated. When OPV vaccination was unrestricted, sewage samples were positive up to 8 months after vaccination, implying community OPV circulation for at least 8 months. OPV-3 was the serotype most found in these samples, indicating prolonged transmission of OPV-3 when compared to the other serotypes. Future work could compare the phylogenetic variance of OPV isolates from sewage after OPV vaccinations.


Assuntos
Monitoramento Ambiental , Reação em Cadeia da Polimerase Multiplex/métodos , Poliomielite/transmissão , Vacina Antipólio Oral , Poliovirus/isolamento & purificação , Vacinação , Humanos , México , Poliomielite/imunologia , Poliomielite/virologia , Poliovirus/genética , Poliovirus/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Rios/virologia , Sensibilidade e Especificidade , Sorogrupo , Esgotos/virologia , Eliminação de Partículas Virais
4.
Clin Infect Dis ; 67(suppl_1): S4-S17, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376097

RESUMO

Background: The World Health Assembly 2012 Polio Eradication and Endgame Strategic Plan calls for the eventual cessation of all oral polio vaccines (OPVs), to be replaced with inactivated polio vaccine (IPV); however, IPV induces less robust mucosal immunity than OPV. This study characterized household and community OPV shedding and transmission after OPV vaccination within primarily IPV-vaccinated communities. Methods: Households in 3 IPV-vaccinated Mexican communities were randomized to receive 3 levels of OPV vaccination coverage (70%, 30%, or 10%). Ten stool samples were collected from all household members over 71 days. Analysis compared vaccinated subjects, household contacts of vaccinated subjects, and subjects in unvaccinated households. Logistic and Cox regression models were fitted to characterize transmission of OPV by coverage and household vaccination status. Results: Among 148 vaccinated children, 380 household contacts, and 1124 unvaccinated community contacts, 78%, 18%, and 7%, respectively, shed OPV. Community and household contacts showed no differences in transmission (odds ratio [OR], 0.67; 95% confidence interval [CI], .37-1.20), in shedding trajectory (OR, 0.61; 95% CI, .35-1.07), or in time to shedding (hazard ratio, 0.68; 95% CI, .39-1.19). Transmission began as quickly as 1 day after vaccination and persisted as long as 71 days after vaccination. Transmission within unvaccinated households differed significantly across vaccination coverage communities, with the 70% community experiencing the most transmissions (15%), and the 10% community experiencing the least (4%). These trends persisted over time and in the time to first shedding analyses. Conclusions: Transmission did not differ between household contacts of vaccinees and unvaccinated households. Understanding poliovirus transmission dynamics is important for postcertification control.


Assuntos
Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio Oral/administração & dosagem , Poliovirus/imunologia , Cobertura Vacinal , Vacinação , Adolescente , Adulto , Criança , Pré-Escolar , Monitoramento Epidemiológico , Características da Família , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , México/epidemiologia , Poliomielite/epidemiologia , Poliomielite/transmissão , Poliomielite/virologia , Poliovirus/fisiologia , Eliminação de Partículas Virais
5.
Bioorg Med Chem ; 24(21): 5380-5387, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647374

RESUMO

Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.


Assuntos
Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Domínio Catalítico/genética , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Mutação , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/química , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade
6.
Pharmacol Res Perspect ; 11(1): e01056, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36708179

RESUMO

The antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity. In this study, 15-HETrE, 15-HETE, and 15-HEPE attenuated collagen-induced platelet aggregation, and 15-HETrE inhibited platelet aggregation induced by different agonists. The observed anti-aggregatory effect was due to the inhibition of intracellular signaling including αIIbß3 and protein kinase C activities, calcium mobilization, and granule secretion. While 15-HETrE inhibited platelets partially through activation of peroxisome proliferator-activated receptor ß (PPARß), 15-HETE also inhibited platelets partially through activation of PPARα. 15-HETrE, 15-HETE, or 15-HEPE inhibited 12-LOX in vitro, with arachidonic acid as the substrate. Additionally, a 15-oxylipin-dependent attenuation of 12-HETE level was observed in platelets following ex vivo treatment with 15-HETrE, 15-HETE, or 15-HEPE. Platelets treated with DGLA formed 15-HETrE and collagen-induced platelet aggregation was attenuated only in the presence of ML355 or aspirin, but not in the presence of 15-LOX-1 or 15-LOX-2 inhibitors. Expression of 15-LOX-1, but not 15-LOX-2, was decreased in leukocyte-depleted platelets compared to non-depleted platelets. Taken together, these findings suggest that 15-oxylipins regulate platelet reactivity; however, platelet expression of 15-LOX-1 is low, suggesting that 15-oxylipins may be formed in the platelet through a 15-LOX-independent pathway.


Assuntos
Ácidos Graxos , Oxilipinas , Araquidonato 15-Lipoxigenase , Eicosanoides , Inibidores de Lipoxigenase/farmacologia , Receptores Depuradores Classe E
7.
ACS Omega ; 7(47): 43169-43179, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467910

RESUMO

Regulation of lipoxygenase (LOX) activity is of great interest due to the involvement of the various LOX isoforms in the inflammatory process and hence many diseases. The bulk of investigations have centered around the discovery and design of inhibitors. However, the emerging understanding of the role of h15-LOX-1 in the resolution of inflammation provides a rationale for the development of activators as well. Bicyclic pyrazolines are known bioactive molecules that have been shown to display antibiotic and anti-inflammatory activities. In the current work, we reevaluated a previously discovered bicyclic pyrazoline h15-LOX-1 activator, PKUMDL_MH_1001 (written as 1 for this publication), and determined that it is inactive against other human LOX isozymes, h5-LOX, h12-LOX, and h15-LOX-2. Analytical characterization of 1 obtained in the final synthesis step identified it as a mixture of cis- and trans-diastereomers: cis-1 (12%) and trans-1 (88%); and kinetic analysis indicated similar potency between the two. Using compound 1 as the cis-trans mixture, h15-LOX-1 catalysis with arachidonic acid (AA) (AC50 = 7.8 +/- 1 µM, A max = 240%) and linoleic acid (AC50 = 5.3 +/- 0.7 µM, A max = 98%) was activated, but not with docosahexaenoic acid (DHA) or mono-oxylipins. Steady-state kinetics demonstrate V-type activation for 1, with a ß value of 2.2 +/- 0.4 and an K x of 16 +/- 1 µM. Finally, it is demonstrated that the mechanism of activation for 1 is likely not due to decreasing substrate inhibition, as was postulated previously. 1 also did not affect the activity of the h15-LOX-1 selective inhibitor, ML351, nor did 1 affect the activity of allosteric effectors, such as 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) and 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA). These data confirm that 1 binds to a distinct activation binding site, as previously postulated. Future work should be aimed at the development of selective activators that are capable of activating h15-LOX-1 catalysis with DHA, thus enhancing the production of DHA-derived pro-resolution biomolecules.

8.
J Thromb Haemost ; 19(3): 839-851, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222370

RESUMO

BACKGROUND: The effects of docosahexaenoic acid (DHA) on cardiovascular disease are controversial and a mechanistic understanding of how this omega-3 polyunsaturated fatty acid (ω-3 PUFA) regulates platelet reactivity and the subsequent risk of a thrombotic event is warranted. In platelets, DHA is oxidized by 12-lipoxygenase (12-LOX) producing the oxidized lipids (oxylipins) 11-HDHA and 14-HDHA. We hypothesized that 12-LOX DHA-oxylipins may be involved in the beneficial effects observed in dietary supplemental treatment with ω-3 PUFAs or DHA itself. OBJECTIVES: To determine the effects of DHA, 11-HDHA, and 14-HDHA on platelet function and thrombus formation, and to elucidate the mechanism by which these ω-3 PUFAs regulate platelet activation. METHODS AND RESULTS: DHA, 11-HDHA, and 14-HDHA attenuated collagen-induced human platelet aggregation, but only the oxylipins inhibited ⍺IIbß3 activation and decreased ⍺-granule secretion. Furthermore, treatment of whole blood with DHA and its oxylipins impaired platelet adhesion and accumulation to a collagen-coated surface. Interestingly, thrombus formation was only diminished in mice treated with 11-HDHA or 14-HDHA, and mouse platelet activation was inhibited following acute treatment with these oxylipins or chronic treatment with DHA, suggesting that under physiologic conditions, the effects of DHA are mediated through its oxylipins. Finally, the protective mechanism of DHA oxylipins was shown to be mediated via activation of protein kinase A. CONCLUSIONS: This study provides the first mechanistic evidence of how DHA and its 12-LOX oxylipins inhibit platelet activity and thrombus formation. These findings support the beneficial effects of DHA as therapeutic intervention in atherothrombotic diseases.


Assuntos
Ácidos Docosa-Hexaenoicos , Trombose , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Oxilipinas , Ativação Plaquetária , Transdução de Sinais , Trombose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA