Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434322

RESUMO

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Metilação de DNA , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 4 Semelhante a Kruppel , Espectrometria de Massas , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Fator Regulador X , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Chembiochem ; : e202400589, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186607

RESUMO

Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three-dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein-protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome-binding domain of an intrinsically disordered protein - HMGN1 - using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over-predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.

3.
Chembiochem ; 25(9): e202400111, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38476018

RESUMO

Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.


Assuntos
DNA , Marcação por Isótopo , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , DNA/química , DNA/metabolismo , Antraciclinas/química , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Aclarubicina/química , Aclarubicina/farmacologia , Aclarubicina/metabolismo , Ressonância Magnética Nuclear Biomolecular
4.
J Biomol NMR ; 77(3): 111-119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289305

RESUMO

In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore proton-detected pulse schemes probing through-bond 13C-13C networks to study mobile protein sidechains as well as polysaccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at high and ultra-high magnetic fields.


Assuntos
Carbono , Prótons , Humanos , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Proteínas/química
5.
Nucleic Acids Res ; 49(8): 4338-4349, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33341892

RESUMO

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB-DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Histonas/química , Methanobacteriales/química , Nucleossomos/química , Fenômenos Mecânicos , Multimerização Proteica
6.
PLoS Genet ; 14(9): e1007582, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212449

RESUMO

The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.


Assuntos
Archaea/fisiologia , DNA/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Histonas/fisiologia , Cristalografia por Raios X , Genoma Arqueal/fisiologia , Histonas/química , Nucleossomos/metabolismo , Transcrição Gênica/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31871087

RESUMO

The Mycobacterium tuberculosis ß-lactamase BlaC is a broad-spectrum ß-lactamase that can convert a range of ß-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, kex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.


Assuntos
Mycobacterium tuberculosis/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Ácidos Borônicos/farmacologia , Domínio Catalítico , Ácido Clavulânico/farmacologia , Espectroscopia de Ressonância Magnética , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , beta-Lactamases/genética
8.
Anal Biochem ; 588: 113469, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604067

RESUMO

Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce any desired DNA sequence in an efficient manner. The current methods either do not offer much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show that ramified rolling circle amplification (RCA) can be used to produce milligram amounts of a genomic nucleosomal DNA fragment in a scalable, one-pot reaction overnight. The protocol is efficient and flexible in choice of DNA sequence. It yields 10-fold more product than PCR, and rivals production using plasmids. We demonstrate the approach by producing the genomic DNA from the human LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer transcription factor Oct4.


Assuntos
DNA Recombinante/síntese química , Técnicas de Amplificação de Ácido Nucleico/métodos , Histonas/genética , Humanos , Nucleossomos/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Ligação a RNA/genética
9.
Mol Cell Proteomics ; 17(10): 2018-2033, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30021884

RESUMO

Cells organize their actions partly through tightly controlled protein-protein interactions-collectively termed the interactome. Here we use crosslinking mass spectrometry (XL-MS) to chart the protein-protein interactions in intact human nuclei. Overall, we identified ∼8,700 crosslinks, of which 2/3 represent links connecting distinct proteins. From these data, we gain insights on interactions involving histone proteins. We observed that core histones on the nucleosomes expose well-defined interaction hot spots. For several nucleosome-interacting proteins, such as USF3 and Ran GTPase, the data allowed us to build low-resolution models of their binding mode to the nucleosome. For HMGN2, the data guided the construction of a refined model of the interaction with the nucleosome, based on complementary NMR, XL-MS, and modeling. Excitingly, the analysis of crosslinks carrying posttranslational modifications allowed us to extract how specific modifications influence nucleosome interactions. Overall, our data depository will support future structural and functional analysis of cell nuclei, including the nucleoprotein assemblies they harbor.


Assuntos
Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Histonas/metabolismo , Espectrometria de Massas/métodos , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes
10.
Nucleic Acids Res ; 46(14): 7138-7152, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29905837

RESUMO

Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Chaperonas de Histonas/química , Proteínas de Ligação a Poli-ADP-Ribose/química , DNA/química , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios Proteicos
11.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114657

RESUMO

Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.


Assuntos
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Termodinâmica
12.
Angew Chem Int Ed Engl ; 59(46): 20508-20514, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533782

RESUMO

The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.


Assuntos
Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica
13.
J Biomol NMR ; 71(2): 69-77, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860650

RESUMO

Understanding of the molecular mechanisms of protein function requires detailed insight into the conformational landscape accessible to the protein. Conformational changes can be crucial for biological processes, such as ligand binding, protein folding, and catalysis. NMR spectroscopy is exquisitely sensitive to such dynamic changes in protein conformations. In particular, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are a powerful tool to investigate protein dynamics on a millisecond time scale. CPMG experiments that probe the chemical shift modulation of 15N in-phase magnetization are particularly attractive, due to their high sensitivity. These experiments require high power 1H decoupling during the CPMG period to keep the 15N magnetization in-phase. Recently, an improved version of the in-phase 15N-CPMG experiment was introduced, offering greater ease of use by employing a single 1H decoupling power for all CPMG pulsing rates. In these experiments however, incomplete decoupling of off-resonance amide 1H spins introduces an artefactual dispersion of relaxation rates, the so-called slow-pulsing artifact. Here, we analyze the slow-pulsing artifact in detail and demonstrate that it can be suppressed through the use of composite pulse decoupling (CPD). We report the performances of various CPD schemes and show that CPD decoupling based on the 90x-240y-90x element results in high-quality dispersion curves free of artifacts, even for amides with high 1H offset.


Assuntos
Artefatos , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Amidas , Magnetismo , Prótons
14.
Angew Chem Int Ed Engl ; 57(17): 4571-4575, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29465771

RESUMO

Chromatin function depends on a dense network of interactions between nucleosomes and a wide range of proteins. A detailed description of these protein-nucleosome interactions is required to reach a full molecular understanding of chromatin function in both genetics and epigenetics. Herein, we show that the structure, dynamics, and interactions of nucleosomes can be interrogated in a residue-specific manner by using state-of-the-art solid-state NMR spectroscopy. Using sedimented nucleosomes, high-resolution spectra were obtained for both flexible histone tails and the non-mobile histone core. Through co-sedimentation of a nucleosome-binding peptide, we demonstrate that protein-binding sites on the nucleosome surface can be determined. We believe that this approach holds great promise as it is generally applicable, extendable to include the structure and dynamics of the bound proteins, and scalable to interactions of proteins with higher-order chromatin structures, including isolated and cellular chromatin.


Assuntos
Cromatina/química , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/química , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico
15.
Nucleic Acids Res ; 42(13): 8705-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957607

RESUMO

Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.


Assuntos
Nicotiana , Proteínas de Plantas/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Sequência Conservada , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Desnaturação de Ácido Nucleico , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Eletricidade Estática
16.
Proc Natl Acad Sci U S A ; 108(30): 12283-8, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21730181

RESUMO

Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome complex determined by a combination of methyl-transverse relaxation optimized nuclear magnetic resonance spectroscopy (methyl-TROSY) and mutational analysis. We found that HMGN2 binds to both the acidic patch in the H2A-H2B dimer and to nucleosomal DNA near the entry/exit point, "stapling" the histone core and the DNA. These results provide insight into how HMGNs regulate chromatin structure through interfering with the binding of linker histone H1 to the nucleosome as well as a structural basis of how phosphorylation induces dissociation of HMGNs from chromatin during mitosis. Importantly, our approach is generally applicable to the study of nucleosome-binding interactions in chromatin.


Assuntos
Proteína HMGN2/química , Nucleossomos/química , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
17.
Nat Commun ; 15(1): 1948, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431715

RESUMO

Microtubules (MTs) are key components of the eukaryotic cytoskeleton and are essential for intracellular organization, organelle trafficking and mitosis. MT tasks depend on binding and interactions with MT-associated proteins (MAPs). MT-associated protein 7 (MAP7) has the unusual ability of both MT binding and activating kinesin-1-mediated cargo transport along MTs. Additionally, the protein is reported to stabilize MTs with its 112 amino-acid long MT-binding domain (MTBD). Here we investigate the structural basis of the interaction of MAP7 MTBD with the MT lattice. Using a combination of solid and solution-state nuclear magnetic resonance (NMR) spectroscopy with electron microscopy, fluorescence anisotropy and isothermal titration calorimetry, we shed light on the binding mode of MAP7 to MTs at an atomic level. Our results show that a combination of interactions between MAP7 and MT lattice extending beyond a single tubulin dimer and including tubulin C-terminal tails contribute to formation of the MAP7-MT complex.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo , Tubulina (Proteína)/metabolismo , Humanos
18.
Methods Mol Biol ; 2819: 357-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028515

RESUMO

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Assuntos
Cromatina , Histonas , Nucleossomos , Ligação Proteica , Cromatina/metabolismo , Cromatina/genética , Nucleossomos/metabolismo , Histonas/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Chaperonas de Histonas/metabolismo
19.
Biophys Rev ; 16(3): 365-382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39099839

RESUMO

Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.

20.
J Mol Biol ; 436(16): 168668, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908784

RESUMO

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Pressão Osmótica , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA