Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genet Med ; 24(3): 681-693, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906499

RESUMO

PURPOSE: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. METHODS: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. RESULTS: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. CONCLUSION: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.


Assuntos
Epilepsia , Deficiência Intelectual , Epilepsia/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Mutação , Fenótipo , Receptores de GABA-A/genética
2.
J Med Genet ; 56(2): 75-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30368457

RESUMO

BACKGROUND: Dravet syndrome is a severe genetic encephalopathy, caused by pathogenic variants in SCN1A. Low-grade parental mosaicism occurs in a substantial proportion of families (7%-13%) and has important implications for recurrence risks. However, parental mosaicism can remain undetected by methods regularly used in diagnostics. In this study, we use single-molecule molecular inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants and high cost-effectiveness, to investigate the incidence of parental mosaicism of SCN1A variants in a cohort of 90 families and assess the feasibility of this technique. METHODS: Deep sequencing of SCN1A was performed using smMIPs. False positive rates for each of the proband's pathogenic variants were determined in 145 unrelated samples. If parents showed corresponding variant alleles at a significantly higher rate than the established noise ratio, mosaicism was confirmed by droplet digital PCR (ddPCR). RESULTS: Sequence coverage of at least 100× at the location of the corresponding pathogenic variant was reached for 80 parent couples. The variant ratio was significantly higher than the established noise ratio in eight parent couples, of which four (5%) were regarded as true mosaics, based on ddPCR results. The false positive rate of smMIP analysis without ddPCR was therefore 50%. Three of these variants had previously been considered de novo in the proband by Sanger sequencing. CONCLUSION: smMIP technology combined withnext generation sequencing (NGS) performs better than Sanger sequencing in the detection of parental mosaicism. Because parental mosaicism has important implications for genetic counselling and recurrence risks, we stress the importance of implementing high-sensitivity NGS-based assays in standard diagnostics.


Assuntos
Epilepsia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Feminino , Humanos , Masculino , Sondas Moleculares , Linhagem , Reação em Cadeia da Polimerase/métodos
3.
Genet Med ; 21(2): 398-408, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30093711

RESUMO

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Síndrome de Brugada/fisiopatologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Linhagem , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/genética
6.
Epilepsy Behav ; 90: 252-259, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527252

RESUMO

PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis.


Assuntos
Epilepsias Mioclônicas/epidemiologia , Epilepsias Mioclônicas/genética , Epilepsia/epidemiologia , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Estudos Transversais , Epilepsias Mioclônicas/diagnóstico , Epilepsia/diagnóstico , Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/epidemiologia , Síndromes Epilépticas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Estudos Retrospectivos , Convulsões Febris/diagnóstico , Convulsões Febris/epidemiologia , Convulsões Febris/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/epidemiologia , Espasmos Infantis/genética , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
7.
Hum Mutat ; 39(12): 1942-1956, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144217

RESUMO

Variants in the SCN2A gene cause a broad spectrum of epilepsy syndromes of variable severity including benign neonatal-infantile epilepsy (BFNIE), developmental and epileptic encephalopathies (DEE), and other neuropsychiatric disorders. Here, we studied three newly identified variants, which caused distinct phenotypes observed in nine affected individuals of three families, including BFNIE, and DEE with intractable neonatal seizures. Whole cell patch-clamp recordings of transfected tsA201 cells disclosed an increased current density and an increased subthreshold sodium inward current upon an action potential stimulus (p.(Lys908Glu)), a hyperpolarizing shift of the activation curve (p.(Val208Glu) and p.(Thr773Ile)), and an increased persistent current (p.(Thr773Ile)). To evaluate genotype-phenotype correlations, we next developed scoring systems for both the extent of the electrophysiological dysfunction and the severity of the clinical phenotype and applied those to 21 previously and newly functionally characterized SCN2A variants. All inherited variants were associated with a mild clinical phenotype and a lower electrophysiological score compared to those occurring de novo and causing severe phenotypes. Our results thus reveal a nice correlation between the extent of channel dysfunction and the clinical severity.


Assuntos
Substituição de Aminoácidos , Síndromes Epilépticas/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Índice de Gravidade de Doença
8.
Epilepsia ; 59(6): 1154-1165, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750338

RESUMO

OBJECTIVE: Pathogenic variants in SCN1A can give rise to extremely variable disease severities that may be indistinguishable at their first presentation. We aim to find clinical features that can help predict the evolution of seizures into Dravet syndrome and clinical features that predict cognitive outcome in Dravet syndrome. We specifically investigate the role of contraindicated medication (CIM) as a possible modifier of cognitive decline. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated. Clinical data were collected from medical records and semistructured telephone interviews. Cognitive function was classified by a child neurologist, neuropsychologist, and clinical geneticist. Several clinical variables, including duration of CIM use in the first 5 years of disease, were evaluated in univariate and multivariate analyses. RESULTS: A longer duration of CIM use in the first 5 years after seizure onset was significantly associated with a worse cognitive outcome at time of inclusion, and with lower interpolated intelligence quotient/developmental quotient scores after the first 5 years of disease in Dravet syndrome patients. CIM use remained a significant predictor for cognitive outcome in a multivariate regression model, as did age at the first observation of developmental delay and age at first afebrile seizure. Age at first afebrile seizure was the most accurate predictor for evolution of seizures into Dravet syndrome for the complete cohort. SIGNIFICANCE: Our data suggest that a longer CIM use in the first 5 years of disease can have negative effects on cognitive outcome in Dravet syndrome. An early diagnosis is essential to avoid these drugs. Furthermore, we identified age at first afebrile seizure as an important predictor for evolution of seizures into Dravet syndrome and for the severity of Dravet syndrome, which can be used to counsel parents of young patients with SCN1A-related seizures.


Assuntos
Anticonvulsivantes/efeitos adversos , Transtornos Cognitivos/etiologia , Epilepsias Mioclônicas , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Fatores Etários , Idade de Início , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Progressão da Doença , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Valor Preditivo dos Testes , Convulsões/etiologia , Adulto Jovem
9.
Epilepsia ; 59(3): 690-703, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460957

RESUMO

OBJECTIVE: Phenotypes caused by de novo SCN1A pathogenic variants are very variable, ranging from severely affected patients with Dravet syndrome to much milder genetic epilepsy febrile seizures plus cases. The most important determinant of disease severity is the type of variant, with variants that cause a complete loss of function of the SCN1A protein (α-subunit of the neuronal sodium channel Nav1.1) being detected almost exclusively in Dravet syndrome patients. However, even within Dravet syndrome disease severity ranges greatly, and consequently other disease modifiers must exist. A better prediction of disease severity is very much needed in daily practice to improve counseling, stressing the importance of identifying modifying factors in this patient group. We evaluated 128 participants with de novo, pathogenic SCN1A variants to investigate whether mosaicism, caused by postzygotic mutation, is a major modifier in SCN1A-related epilepsy. METHODS: Mosaicism was investigated by reanalysis of the pathogenic SCN1A variants using single molecule molecular inversion probes and next generation sequencing with high coverage. Allelic ratios of pathogenic variants were used to determine whether mosaicism was likely. Selected mosaic variants were confirmed by droplet digital polymerase chain reaction and sequencing of different tissues. Developmental outcome was classified based on available data on intelligence quotient and school functioning/education. RESULTS: Mosaicism was present for 7.5% of de novo pathogenic SCN1A variants in symptomatic patients. Mosaic participants were less severely affected than nonmosaic participants if only participants with truncating variants are considered (distribution of developmental outcome scores, Mann-Whitney U, P = .023). SIGNIFICANCE: Postzygotic mutation is a common phenomenon in SCN1A-related epilepsies. Participants with mosaicism have on average milder phenotypes, suggesting that mosaicism can be a major modifier of SCN1A-related diseases. Detection of mosaicism has important implications for genetic counseling and can be achieved by deep sequencing of unique reads.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética/genética , Mosaicismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Brain ; 140(5): 1316-1336, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379373

RESUMO

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/fisiologia , Transtornos do Neurodesenvolvimento/genética , Bloqueadores dos Canais de Sódio/uso terapêutico , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Dinamarca/epidemiologia , Epilepsia/epidemiologia , Feminino , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto Jovem
11.
J Med Genet ; 53(12): 850-858, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27358180

RESUMO

BACKGROUND: Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. METHODS: Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. RESULTS: All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. CONCLUSIONS: Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Mutação da Fase de Leitura , Deficiência Intelectual/metabolismo , Mosaicismo , Proteínas do Tecido Nervoso/genética , Inativação do Cromossomo X , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos X , Códon sem Sentido , Epilepsia Resistente a Medicamentos/genética , Feminino , Genes Ligados ao Cromossomo X , Heterozigoto , Humanos , Deficiência Intelectual/genética , Pessoa de Meia-Idade , Síndrome
12.
Epilepsia ; 56(9): e114-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122718

RESUMO

Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.


Assuntos
Epilepsias Parciais/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Canais de Potássio Ativados por Sódio , Morte Súbita do Lactente/genética
13.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501353

RESUMO

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Epilepsia Generalizada , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Lactente , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/genética , Fácies , Proteínas Repressoras/genética , Fatores de Transcrição
14.
Eur J Neurosci ; 34(8): 1268-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21864321

RESUMO

Relatively few SCN1A mutations associated with genetic epilepsy with febrile seizures-plus (GEFS+) and Dravet syndrome (DS) have been functionally characterized. In contrast to GEFS+, many mutations detected in DS patients are predicted to have complete loss of function. However, functional consequences are not immediately apparent for DS missense mutations. Therefore, we performed a biophysical analysis of three SCN1A missense mutations (R865G, R946C and R946H) we detected in six patients with DS. Furthermore, we compared the functionality of the R865G DS mutation with that of a R859H mutation detected in a GEFS+ patient; the two mutations reside in the same voltage sensor domain of Na(v) 1.1. The four mutations were co-expressed with ß1 and ß2 subunits in tsA201 cells, and characterized using the whole-cell patch clamp technique. The two DS mutations, R946C and R946H, were nonfunctional. However, the novel voltage sensor mutants R859H (GEFS+) and R865G (DS) produced sodium current densities similar to those in wild-type channels. Both mutants had negative shifts in the voltage dependence of activation, slower recovery from inactivation, and increased persistent current. Only the GEFS+ mutant exhibited a loss of function in voltage-dependent channel availability. Our results suggest that the R859H mutation causes GEFS+ by a mixture of biophysical defects in Na(v) 1.1 gating. Interestingly, while loss of Na(v) 1.1 function is common in DS, the R865G mutation may cause DS by overall gain-of-function defects.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Convulsões Febris/genética , Convulsões Febris/fisiopatologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Ativação do Canal Iônico/genética , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/química , Técnicas de Patch-Clamp , Canais de Sódio/química , Síndrome
15.
Epilepsia ; 52(4): e23-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21371021

RESUMO

Most patients with Dravet syndrome have de novo mutations in the neuronal voltage-gated sodium channel type 1 (SCN1A) gene. We report on two unrelated fathers with severe childhood epilepsy compatible with a possible diagnosis of Dravet syndrome, who both have a child with Dravet syndrome. Analysis of the SCN1A gene revealed a pathogenic mutation in both children. One father exhibited somatic mosaicism for the mutation detected in his son. A relatively favorable cognitive outcome in patients with Dravet syndrome patients may be explained by somatic mosaicism for the SCN1A mutation in brain tissue. A mild form of Dravet syndrome in adult patients is associated with a high recurrence risk and possibly a more severe epilepsy phenotype in their offspring.


Assuntos
Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1 , Síndrome
16.
Epilepsia ; 52(8): 1506-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21692791

RESUMO

PURPOSE: Cases of severe childhood epilepsies in temporal association with vaccination have great impact on the acceptance of vaccination programs by parents and health care providers. However, little is known about the type and frequency of seizures and epilepsy syndromes following vaccination. This study aims to describe the clinical features of children presenting with seizures after vaccination using a register-based cohort. METHODS: We surveyed the national German database of adverse events following immunization (AEFI) for reported seizures and epilepsies in children aged 0-6 years. All cases reported in 2006-2008 were analyzed retrospectively; available clinical information was reevaluated and classified by seizure type and epilepsy syndrome. KEY FINDINGS: In total, 328 cases reported between 2006 and 2008 were included. Data supportive of seizures or epilepsy were present in 247 (75.3%) of 328 patients with a mean interval between the vaccination and the epileptic event of 24 h and 7.5 days for inactivated and attenuated vaccines, respectively. Fifty-one (15.5%) of 328 patients presented with syncope, hypotonic-hyporesponsive episodes, or other nonepileptic events. Information was insufficient for classification into epileptic versus nonepileptic events in 30 (11.3%) of 328 patients. For cases with confirmed seizures, febrile seizures were present in 121 (49%) of 247 cases, and 38 (15.4%) of 247 patients had single afebrile seizures. Status epilepticus was described in 21 (8.5%) of 247 patients. Thirty-one (12.6%) of 247 patients presented with various pediatric epilepsy syndromes. Severe childhood epilepsies (Dravet syndrome, West syndrome, Lennox-Gastaut syndrome, or Doose syndrome) were diagnosed in 29 (11.7%) of 247 patients, with the vaccination-associated event being the first documented seizure in 15 (51.7%) of 29 patients. SIGNIFICANCE: Vaccination-associated seizures present in the setting of various epilepsy syndromes, including severe childhood epilepsies in >10% of cases. Early diagnosis of the corresponding epilepsy syndromes and confirmation of an underlying etiology is important for treatment decisions, genetic counseling, and public health evaluation of vaccine safety.


Assuntos
Convulsões/etiologia , Vacinação/efeitos adversos , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/classificação , Epilepsia/etiologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Vigilância da População , Estudos Retrospectivos , Convulsões/classificação , Síndrome
17.
Pediatr Int ; 52(2): 234-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19563458

RESUMO

BACKGROUND: Severe myoclonic epilepsy in infancy (SMEI) and borderline SMEI (SMEB) are caused by a mutation in SCN1A, which encodes a voltage-gated sodium channel alpha1-subunit protein. Although many mutations in SCN1A have been associated with clinical features of SMEI or SMEB from different ethnic groups, there have been no such reports from the South-East Asian populations so far. METHODS: Patients 1 and 2 were Indonesian children diagnosed as having SMEI and SMEB based on their clinical features. SCN1A was screened for mutations using a combination of polymerase chain reaction and denaturing high-performance liquid chromatography. Nucleotide substitutions were confirmed on direct sequencing. RESULTS: In patient 1, a G-to-A heterozygous transition was detected at nucleotide 4834 (c.4834G>A) in exon 25, leading to substitution of valine with isoleucine at amino acid position 1612 (p.V1612I) in the SCN1A protein. In patient 2 a T-to-G heterozygous transversion was identified at nucleotide 5266 (c.5266T>G) in exon 26, leading to substitution of cysteine with glycine at amino acid 1756 (p.C1756G) in the SCN1A protein. Both amino acid substitutions might disrupt these highly conserved regions in species from drosophila to human, leading to dysfunction of the protein. p.V1612I and p.C1756G were determined as disease-causing mutations due to their absence in the control population. CONCLUSION: The first cases of SMEI and SMEB are reported in South-East Asian populations. Two novel SCN1A mutations are also identified in these patients, p.V1612I and p.C1756G, which may lead to neuronal excitability or convulsions.


Assuntos
Epilepsias Mioclônicas/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Criança , Humanos , Indonésia , Lactente , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1 , Linhagem , Índice de Gravidade de Doença
18.
Mol Genet Genomic Med ; 8(4): e1103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032478

RESUMO

BACKGROUND: SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS: 87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS: Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION: Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.


Assuntos
Síndromes Epilépticas/genética , Genes Modificadores , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Síndromes Epilépticas/patologia , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
Mol Genet Genomic Med ; 7(7): e00727, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31144463

RESUMO

BACKGROUND: Pathogenic variants in SCN1A cause variable epilepsy disorders with different disease severities. We here investigate whether common variation in the promoter region of the unaffected SCN1A allele could reduce normal expression, leading to a decreased residual function of Nav1.1, and therefore to more severe clinical outcomes in patients affected by pathogenic SCN1A variants. METHODS: Five different SCN1A promoter-haplotypes were functionally assessed in SH-SY5Y cells using Firefly and Renilla luciferase assays. The SCN1A promoter region was analyzed in a cohort of 143 participants with SCN1A pathogenic variants. Differences in clinical features and outcomes between participants with and without common variants in the SCN1A promoter-region of their unaffected allele were investigated. RESULTS: All non-wildtype haplotypes showed a significant reduction in luciferase expression, compared to the wildtype promoter-region (65%-80%, p = 0.039-0.0023). No statistically significant differences in clinical outcomes were observed between patients with and without common promoter variants. However, patients with a wildtype promoter-haplotype on their unaffected SCN1A allele showed a nonsignificant trend for milder phenotypes. CONCLUSION: The nonsignificant observed trends in our study warrant replication studies in larger cohorts to explore the potential modifying role of these common SCN1A promoter-haplotypes.


Assuntos
Epilepsia/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Alelos , Linhagem Celular Tumoral , Criança , Pré-Escolar , Epilepsia/genética , Genes Reporter , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Índice de Gravidade de Doença , Adulto Jovem
20.
Circulation ; 112(15): 2235-44, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16203908

RESUMO

BACKGROUND: Recordings of the electrical activity of mouse bundle branches (BBs) suggest reduced conduction velocity (CV) in the midseptal compared with the proximal part of the BB. The present study was performed to elucidate the mechanism responsible for this slowing of conduction. METHODS AND RESULTS: Hearts of 16 mice were isolated and Langendorff perfused. After the right and left ventricular free walls were removed, the extracellular activity of the BB was mapped with a 247-point electrode. Premature stimulation was used to estimate CV restitution in the BBs. Expression/distribution of connexin40 (Cx40), Cx43, and Cx45 was determined. Morphology of the conduction system was assessed by whole-mount acetylcholine esterase staining and in Cx40(+/KI-GFP) hearts. Effective CV in the midseptal part of the left and right BBs was reduced by 50% compared with the proximal BB. CV restitution in the proximal and midseptal parts of the BBs was similar. Myocytes labeled positive for Cx40 and Cx45 in the entire BB. Cx43 colocalized with Cx40 and Cx45 only in the very distal BB. Subcellular distribution of gap junctions differed between proximal and distal BBs. Geometry of the midseptal and distal BBs revealed on both sides a profuse network of interlacing fibers, whereas the proximal BB consisted of a single (right BB) or multiple (left BB) parallel fibers. CONCLUSIONS: Comparison of connexin expression/distribution, geometry of the BBs, and CV characteristics suggests that increased path length for activation resulting from BB geometry is responsible for the apparently reduced CV in the midseptal BB of the mouse heart.


Assuntos
Fascículo Atrioventricular/fisiologia , Bloqueio de Ramo/etiologia , Sistema de Condução Cardíaco/fisiologia , Condução Nervosa/fisiologia , Animais , Fascículo Atrioventricular/fisiopatologia , Bloqueio de Ramo/patologia , Bloqueio de Ramo/fisiopatologia , Conexinas/genética , Modelos Animais de Doenças , Eletrofisiologia/métodos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteína alfa-5 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA