Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Virol ; 97(6): e0041523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306574

RESUMO

Rift Valley fever virus (RVFV) (family Phenuiviridae) can cause severe disease, and outbreaks of this mosquito-borne pathogen pose a significant threat to public and animal health. Yet many molecular aspects of RVFV pathogenesis remain incompletely understood. Natural RVFV infections are acute, characterized by a rapid onset of peak viremia during the first days post-infection, followed by a rapid decline. Although in vitro studies identified a major role of interferon (IFN) responses in counteracting the infection, a comprehensive overview of the specific host factors that play a role in RVFV pathogenesis in vivo is still lacking. Here, the host in vivo transcriptional profiles in the liver and spleen tissues of lambs exposed to RVFV are studied using RNA sequencing (RNA-seq) technology. We validate that IFN-mediated pathways are robustly activated in response to infection. We also link the observed hepatocellular necrosis with severely compromised organ function, which is reflected as a marked downregulation of multiple metabolic enzymes essential for homeostasis. Furthermore, we associate the elevated basal expression of LRP1 in the liver with RVFV tissue tropism. Collectively, the results of this study deepen the knowledge of the in vivo host response during RVFV infection and reveal new insights into the gene regulation networks underlying pathogenesis in a natural host. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen capable of causing severe disease in animals and humans. Outbreaks of RVFV pose a significant threat to public health and can result in substantial economic losses. Little is known about the molecular basis of RVFV pathogenesis in vivo, particularly in its natural hosts. We employed RNA-seq technology to investigate genome-wide host responses in the liver and spleen of lambs during acute RVFV infection. We show that RVFV infection drastically decreases the expression of metabolic enzymes, which impairs normal liver function. Moreover, we highlight that basal expression levels of the host factor LRP1 may be a determinant of RVFV tissue tropism. This study links the typical pathological phenotype induced by RVFV infection with tissue-specific gene expression profiles, thereby improving our understanding of RVFV pathogenesis.


Assuntos
Homeostase , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Ovinos , Transcriptoma , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fígado , Interações Hospedeiro-Patógeno , Interferons/metabolismo
2.
Neuropathol Appl Neurobiol ; 50(1): e12963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353056

RESUMO

AIM: CH1641 was discovered in 1970 as a scrapie isolate that was unlike all other classical strains of scrapie isolated so far. We performed bio-assays of CH1641 in mice in order to further characterise this specific isolate. METHODS: We inoculated the original CH1641 isolate into ovine and bovine prion protein (PrP) transgenic mice as well as wild-type mice. In addition, we performed cross- and back passages between the various mouse lines to examine if one identical prion strain was isolated in all mouse lines or whether multiple prion strains exist in CH1641. RESULTS: We report the first successful transmission of CH1641 to wild-type RIII mice and via RIII mice to wild-type VM mice. Unexpectedly, analysis of the protease-resistant prion protein (PrPres ) in wild-type mice showed a classical scrapie banding pattern differing from the banding pattern of the original CH1641 isolate. Cross- and back passages of CH1641 between the various mouse lines confirmed that the same prion strain had been isolated in all mouse lines. CONCLUSIONS: The CH1641 isolate consists of a single prion strain but its molecular banding pattern of PrPres differs between wild-type mice and PrP transgenic mice. Consequently, molecular banding patterns of PrPres should be used with caution in strain typing since they do not solely depend on the properties of the prion strain but also on the host prion protein.


Assuntos
Príons , Scrapie , Camundongos , Animais , Bovinos , Ovinos , Príons/metabolismo , Scrapie/metabolismo , Proteínas Priônicas/genética , Proteínas PrPSc/metabolismo , Camundongos Transgênicos
3.
J Gen Virol ; 104(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757863

RESUMO

Peste des petits ruminants virus (PPRV) is a highly contagious morbillivirus related to measles and canine distemper virus, mostly affecting small ruminants. The corresponding PPR disease has a high clinical impact in goats and is characterized by fever, oral and nasal erosions, diarrhoea and pneumonia. In addition, massive infection of lymphoid tissues causes lymphopaenia and immune suppression. This results in increased susceptibility to secondary bacterial infections, explaining the observed high mortality in some outbreaks. We studied the pathogenesis of PPR by experimental inoculation of Dutch domestic goats with a recombinant virulent PPRV strain modified to express EGFP and compared it to an EGFP-expressing vaccine strain of PPRV. After intratracheal inoculation with virulent PPRV, animals developed fever, viraemia and leucopaenia, and shed virus from the respiratory and gastro-intestinal tracts. Macroscopic evaluation of fluorescence at the peak of infection 7 days post-inoculation (dpi) showed prominent PPRV infection of the respiratory tract, lymphoid tissues, gastro-intestinal tract, mucosae and skin. Flow cytometry of PBMCs collected over time demonstrated a cell-associated viraemia mediated by infected lymphocytes. At 14 dpi, pathognomonic zebra stripes were detected in the mucosa of the large intestine. In contrast, vaccine strain-inoculated goats remained largely macroscopically fluorescence negative and did not present clinical signs. A low-level viraemia was detected by flow cytometry, but at necropsy no histological lesions were observed. Animals from both groups seroconverted as early as 7 dpi and sera efficiently neutralized virulent PPRV in vitro. Combined, this work presents a study of the pathogenesis of wild type- and vaccine-based PPRV in its natural host. This study shows the strength of recombinant EGFP-expressing viruses in fluorescence-guided pathogenesis studies.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Vacinas Virais , Animais , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/prevenção & controle , Viremia/veterinária , Cabras , Vacinas Virais/genética , Doenças das Cabras/prevenção & controle
4.
Vet Res ; 52(1): 141, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801064

RESUMO

Chlamydia psittaci was considered the predominant chlamydial species in poultry until Chlamydia gallinacea was discovered in 2009. C. psittaci is a zoonotic obligate intracellular bacterium reported in more than 465 bird species including poultry. In poultry, infections can result in asymptomatic disease, but also in more severe systemic illness. The zoonotic potential of C. gallinacea has yet to be proven. Infections in poultry appear to be asymptomatic and in recent prevalence studies C. gallinacea was the main chlamydial species found in chickens. The high prevalence of C. gallinacea resulted in the question if an infection with C. gallinacea might protect against an infection with C. psittaci. To investigate possible cross protection, chickens were inoculated with C. gallinacea NL_G47 and subsequently inoculated with either a different strain of C. gallinacea (NL_F725) or C. psittaci. Chickens that had not been pre-inoculated with C. gallinacea NL_G47 were used as a C. gallinacea or C. psittaci infection control. In the groups that were inoculated with C. psittaci, no difference in pharyngeal or cloacal shedding, or in tissue dissemination was observed between the control group and the pre-inoculated group. In the groups inoculated with C. gallinacea NL_F725, shedding in cloacal swabs and tissues dissemination was lower in the group pre-inoculated with C. gallinacea NL_G47. These results indicate previous exposure to C. gallinacea does not protect against an infection with C. psittaci, but might protect against a new infection of C. gallinacea.


Assuntos
Infecções por Chlamydia , Chlamydia , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/veterinária , Chlamydophila psittaci , Doenças das Aves Domésticas/prevenção & controle
5.
Vet Res ; 51(1): 74, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471481

RESUMO

Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. In Europe, small ruminants are the main source of human Q fever. Small ruminant herds can be infectious during several lambing seasons. However, it is not clear how infection is maintained in a herd and what role non-pregnant animals play in the transmission of C. burnetii. We therefore inoculated nulliparous goats with C. burnetii, isolated from the outbreak of Q fever in the Netherlands, to gain a better understanding of the role of non-pregnant goats. Seroconversion and excretion of C. burnetii were monitored after inoculation. To study the effect of breeding on the excretion of C. burnetii, the goats were naturally bred and monitored during gestation and after lambing. Our results indicate that C. burnetii infection prior to breeding did not result in infection of the placenta nor did it affect the gestation length or the number of kids born. However, one of the ten does did excrete C. burnetii in the colostrum post-partum and the bacterium was detected in the mammary gland and associated lymph nodes at necropsy. This result indicates that non-pregnant goats might play a role in maintaining Q fever in a goat herd as persistent carriers of infection.


Assuntos
Coxiella burnetii/isolamento & purificação , Doenças das Cabras/microbiologia , Leite/microbiologia , Febre Q/veterinária , Microbiologia do Ar , Animais , Cruzamento , Colostro/microbiologia , Fezes/microbiologia , Feminino , Cabras , Febre Q/microbiologia , Vagina/microbiologia
6.
Vet Res ; 50(1): 97, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767033

RESUMO

Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants-CS-1 and CS-2 (mainly Italy)-which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters.


Assuntos
Western Blotting/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/classificação , Scrapie/classificação , Animais , Western Blotting/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Europa (Continente) , Doenças das Cabras/diagnóstico , Cabras , Scrapie/diagnóstico
7.
J Virol ; 88(5): 2903-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371051

RESUMO

UNLABELLED: Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to small ruminants (sheep and goats) with certain prion protein (PrP) genotypes. Polymorphisms in PrP of both the host and donor influence the transmission efficiency of transmissible spongiform encephalopathies (TSEs) in general. These polymorphisms in PrP also modulate the PrP conversion underlying TSE agent replication. Here we demonstrate that single-round protein misfolding cyclic amplification (PMCA) can be used to assess species and polymorphism barriers at the molecular level. We assessed those within and between the ovine and bovine species in vitro using a variety of natural scrapie and experimentally generated cross-species BSE agents. These BSE agents include ovBSE-ARQ isolates (BSE derived from sheep having the ARQ/ARQ PrP genotype), and two unique BSE-derived variants: BSE passaged in VRQ/VRQ sheep and a cow BSE agent isolate generated by back-transmission of ovBSE-ARQ into its original host. PMCA allowed us to quantitatively determine PrP conversion profiles that correlated with known in vivo transmissibility and susceptibility in the two ruminant species in which strain-specific molecular signatures, like its molecular weight after protease digestion, were maintained. Furthermore, both BSE agent isolates from ARQ and VRQ sheep demonstrated a surprising transmission profile in which efficient transmissions to both sheep and bovine variants was combined. Finally, all data support the notion that ARQ-derived sheep BSE points to a significant increase in virulence compared to all other tested scrapie- and BSE-derived variants reflected by the increased conversion efficiencies of previously inefficient convertible PrP variants (including the so-called "resistant" sheep ARR variant). IMPORTANCE: Prion diseases such as scrapie in sheep and goats, BSE in cattle, and Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative diseases caused by prions. BSE is known to be transmissible to a variety of hosts, including sheep and humans. Based on the typical BSE agent strain signatures and epidemiological data, the occurrence of a novel variant of CJD in humans was linked to BSE occurrence in the United Kingdom. Measures, including genetic selection of sheep toward less susceptible PrP genotypes, have been implemented to lower the risk of BSE transmission into sheep, since the disease could potentially spread into a natural reservoir. In this study, we demonstrated using molecular PrP conversion studies that when BSE is first transmitted through sheep, the host range is modified significantly and the PrP converting potency increased, allowing the ovine BSE to transmit more efficiently than cow BSE into supposedly less susceptible hosts.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Príons/patogenicidade , Scrapie/transmissão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Genótipo , Príons/química , Príons/genética , Dobramento de Proteína , Ovinos , Especificidade da Espécie , Virulência
8.
Neuropathol Appl Neurobiol ; 41(6): 756-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25201447

RESUMO

UNLABELLED: TSE strains are routinely identified by their incubation period and vacuolation profile in the brain after intracerebral inoculation and serial passaging in inbred mouse lines. There are some major drawbacks to this method that are related to the variation in vacuolation that exists in the brains of mice infected with the same TSE strain and to variation between observers and laboratories in scoring vacuolation and determining the final incubation period. AIM: We investigated the potential of PrP(Sc) immunohistochemistry and triplex Western blotting as possible alternative methods to differentiate between TSE strains. METHODS: TSE reference strains ME7, 87A/87V, 22A/22C, 79A/79V and 301C/301V were intracerebrally inoculated in RIII or VM inbred mice that differ in their PrP genotype. Immunohistochemical PrP(Sc) profiles were drawn up by scanning light microscopy both on coronal and sagittal sections. RESULTS: On the basis of the localization of PrP(Sc) in the cerebral cortex, hippocampus, and cerebellar cortex and the overall type of PrP(Sc) staining, all TSE strains could be well differentiated from each other through their typical strain dependent characteristics. In addition, Western blot showed that the combination of glycosylation profile and 12B2 epitope content of PrP(Sc) allowed to distinguish between all reference strains except for ME7 and 22A in VM mice. CONCLUSION: TSE strains in mice can be identified on the basis of their PrP(Sc) profile alone. The potential to identify TSE strains in ruminants with these PrP(Sc) profiles after a single primary passage in mice will be the topic of future studies.


Assuntos
Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Imuno-Histoquímica , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Scrapie/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPSc/imunologia , Doenças Priônicas/imunologia , Scrapie/imunologia
9.
Vet Microbiol ; 296: 110183, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991314

RESUMO

Brucella canis is a zoonotic pathogen and the main causative agent of canine brucellosis. In the Netherlands, B. canis had previously only been detected in individual cases of imported dogs. However, an outbreak of B. canis occurred for the first time in a cohort of autochthonous dogs in a breeding kennel in 2019. The outbreak began with a positive serological test result of an imported intact male dog showing clinical symptoms of brucellosis. Consequently, urine and blood samples were collected and tested positive for B. canis by culture, matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF MS) and whole-genome-sequencing (WGS). Screening of the contact dogs in the kennel where the index case was kept, revealed that antibodies against B. canis could be detected in 23 out of 69 dogs (34 %) by serum agglutination test (SAT). Of the 23 seropositive dogs, B. canis could be cultured from the urine and/or heparin samples of 19 dogs (83 %). This outbreak represents the first documented case of transmission of B. canis to autochthonous contact dogs in the Netherlands. WGS revealed all B. canis isolates belonged to the same cluster, which means the transmission of B. canis in the breeding kennel was most likely caused by the introduction of one infected dog. Comparing this cluster with data from other B. canis isolates, it also appears that characteristic clusters of B. canis are present in several endemic countries. These clusters seem to remain stable over time and may help in locating the origin of new isolates found. This outbreak showed that the international movement of dogs from endemic countries poses a threat to the canine population, while serological screening and WGS proved to be valuable tools for respectively screening and the epidemiological investigation.


Assuntos
Brucella canis , Brucelose , Surtos de Doenças , Doenças do Cão , Cães , Animais , Brucella canis/isolamento & purificação , Brucella canis/genética , Doenças do Cão/microbiologia , Doenças do Cão/transmissão , Doenças do Cão/epidemiologia , Brucelose/veterinária , Brucelose/transmissão , Brucelose/epidemiologia , Brucelose/microbiologia , Masculino , Surtos de Doenças/veterinária , Países Baixos/epidemiologia , Sequenciamento Completo do Genoma , Anticorpos Antibacterianos/sangue
10.
Pathogens ; 13(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39204230

RESUMO

After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.

11.
Lancet Infect Dis ; 24(11): 1245-1253, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39068957

RESUMO

BACKGROUND: Rift Valley fever virus, a pathogen to ruminants, camelids, and humans, is an emerging mosquito-borne bunyavirus currently endemic to Africa and the Arabian Peninsula. Although animals are primarily infected via mosquito bites, humans mainly become infected following contact with infected tissues or fluids of infected animals. There is an urgent need for adequate countermeasures, especially for humans, because effective therapeutics or vaccines are not yet available. Here we assessed the safety, tolerability, and immunogenicity of a next-generation, four-segmented, live-attenuated vaccine candidate, referred to as hRVFV-4s, in humans. METHODS: A first-in-human, single-centre, randomised, double-blind, placebo-controlled trial was done in Belgium in which a single dose of hRVFV-4s was administered to healthy volunteers aged 18-45 years. Participants were randomly assigned using an interactive web response system. The study population encompassed 75 participants naive to Rift Valley fever virus infection, divided over three dosage groups (cohorts) of 25 participants each. All participants were followed up until 6 months. Using a staggered dose escalating approach, 20 individuals of each cohort were injected in the deltoid muscle of the non-dominant arm with either 104 (low dose), 105 (medium dose), or 106 (high dose) of 50% tissue culture infectious dose of hRVFV-4s as based on animal data, and five individuals per cohort received formulation buffer as a placebo. Primary outcome measures in the intention-to-treat population were adverse events and tolerability. Secondary outcome measures were vaccine-induced viraemia, vaccine virus shedding, Rift Valley fever virus nucleocapsid antibody responses (with ELISA), and neutralising antibody titres. Furthermore, exploratory objectives included the assessment of cellular immune responses by ELISpot. The trial was registered with the EU Clinical Trials Register, 2022-501460-17-00. FINDINGS: Between August and December, 2022, all 75 participants were vaccinated. No serious adverse events or vaccine-related severe adverse events were reported. Pain at the injection site (51 [85%] of 60 participants) was most frequently reported as solicited local adverse event, and headache (28 [47%] of 60) and fatigue (28 [47%] of 60) as solicited systemic adverse events in the active group. No vaccine virus RNA was detected in any of the blood, saliva, urine, or semen samples. Rift Valley fever virus nucleocapsid antibody responses were detected in most participants who were vaccinated with hRVFV-4s (43 [72%] of 60 on day 14) irrespective of the administered dose. In contrast, a clear dose-response relationship was observed for neutralising antibodies on day 28 with four (20%) of 20 participants responding in the low-dose group, 13 (65%) of 20 responding in the medium-dose group, and all participants (20 [100%] of 20) responding in the high-dose group. Consistent with the antibody responses, cellular immune responses against the nucleocapsid protein were detected in all dose groups, whereas a more dose-dependent response was observed for the Gn and Gc surface glycoproteins. Neutralising antibody titres declined over time, whereas nucleocapsid antibody responses remained relatively stable for at least 6 months. INTERPRETATION: The hRVFV-4s vaccine showed a high safety profile and excellent tolerability across all tested dose regimens, eliciting robust immune responses, particularly with the high-dose administration. The findings strongly support further clinical development of this candidate vaccine for human use. FUNDING: The Coalition for Epidemic Preparedness Innovations with support from the EU Horizon 2020 programme.


Assuntos
Anticorpos Antivirais , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Humanos , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/imunologia , Adulto , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vírus da Febre do Vale do Rift/imunologia , Masculino , Método Duplo-Cego , Feminino , Adulto Jovem , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Pessoa de Meia-Idade , Voluntários Saudáveis , Adolescente , Bélgica , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia
12.
Front Cell Infect Microbiol ; 13: 1206089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170150

RESUMO

Rift Valley fever virus (RVFV) is a (re)emerging mosquito-borne pathogen impacting human and animal health. How RVFV spreads through a population depends on population-level and individual-level interactions between vector, host and pathogen. Here, we estimated the probability for RVFV to transmit to naive animals by experimentally exposing lambs to a bite of an infectious mosquito, and assessed if and how RVFV infection subsequently developed in the exposed animal. Aedes aegypti mosquitoes, previously infected via feeding on a viremic lamb, were used to expose naive lambs to the virus. Aedes aegypti colony mosquitoes were used as they are easy to maintain and readily feed in captivity. Other mosquito spp. could be examined with similar methodology. Lambs were exposed to either 1-3 (low exposure) or 7-9 (high exposure) infectious mosquitoes. All lambs in the high exposure group became viremic and showed characteristic signs of Rift Valley fever within 2-4 days post exposure. In contrast, 3 out of 12 lambs in the low exposure group developed viremia and disease, with similar peak-levels of viremia as the high exposure group but with some heterogeneity in the onset of viremia. These results suggest that the likelihood for successful infection of a ruminant host is affected by the number of infectious mosquitoes biting, but also highlights that a single bite of an infectious mosquito can result in disease. The per bite mosquito-to-host transmission efficiency was estimated at 28% (95% confidence interval: 15 - 47%). We subsequently combined this transmission efficiency with estimates for life traits of Aedes aegypti or related mosquitoes into a Ross-McDonald mathematical model to illustrate scenarios under which major RVFV outbreaks could occur in naïve populations (i.e., R0 >1). The model revealed that relatively high vector-to-host ratios as well as mosquitoes feeding preferably on competent hosts are required for R0 to exceed 1. Altogether, this study highlights the importance of experiments that mimic natural exposure to RVFV. The experiments facilitate a better understanding of the natural progression of disease and a direct way to obtain epidemiological parameters for mathematical models.


Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Mosquitos Vetores , Febre do Vale de Rift/epidemiologia , Ruminantes , Ovinos , Viremia/veterinária
13.
Sci Rep ; 13(1): 21627, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062065

RESUMO

The distribution of tick-borne encephalitis virus (TBEV) is expanding to Western European countries, including the Netherlands, but the contribution of different rodent species to the transmission of TBEV is poorly understood. We investigated whether two species of wild rodents native to the Netherlands, the wood mouse Apodemus sylvaticus and the yellow-necked mouse Apodemus flavicollis, differ in their relative susceptibility to experimental infection with TBEV. Wild-caught individuals were inoculated subcutaneously with the classical European subtype of TBEV (Neudoerfl) or with TBEV-NL, a genetically divergent TBEV strain from the Netherlands. Mice were euthanised and necropsied between 3 and 21 days post-inoculation. None of the mice showed clinical signs or died during the experimental period. Nevertheless, TBEV RNA was detected up to 21 days in the blood of both mouse species and TBEV was also isolated from the brain of some mice. Moreover, no differences in infection rates between virus strains and mouse species were found in blood, spleen, or liver samples. Our results suggest that the wood mouse and the yellow-necked mouse may equally contribute to the transmission cycle of TBEV in the Netherlands. Future experimental infection studies that include feeding ticks will help elucidate the relative importance of viraemic transmission in the epidemiology of TBEV.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Murinae , Países Baixos
14.
NPJ Vaccines ; 7(1): 54, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585071

RESUMO

Rift Valley fever virus (RVFV) is an emerging mosquito-borne bunyavirus that is highly pathogenic to wild and domesticated ruminants, camelids, and humans. While animals are exclusively infected via mosquito bites, humans can also be infected via contact with contaminated tissues or blood. No human vaccine is available and commercialized veterinary vaccines do not optimally combine efficacy with safety. We previously reported the development of two novel live-attenuated RVF vaccines, created by splitting the M genome segment and deleting the major virulence determinant NSs. The vaccine candidates, referred to as the veterinary vaccine vRVFV-4s and the human vaccine hRVFV-4s, were shown to induce protective immunity in multiple species after a single vaccination. Anticipating accidental exposure of humans to the veterinary vaccine and the application of hRVFV-4s to humans, the safety of each vaccine was evaluated in the most susceptible nonhuman primate model, the common marmoset (Callithrix jacchus). Marmosets were inoculated with high doses of each vaccine and were monitored for clinical signs as well as for vaccine virus dissemination, shedding, and spreading to the environment. To accurately assess the attenuation of both vaccine viruses, separate groups of marmosets were inoculated with the parent wild-type RVFV strains. Both wild-type strains induced high viremia and disseminated to primary target organs, associated with mild-to-severe morbidity. In contrast, both vaccines were well tolerated with no evidence of dissemination and shedding while inducing potent neutralizing antibody responses. The results of the studies support the unprecedented safety profile of both vaccines for animals and humans.

15.
Vet Res ; 42: 5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21314971

RESUMO

Susceptibility to scrapie, a transmissible spongiform encephalopathy in sheep, is modulated by the genetic make-up of the sheep. Scrapie control policies, based on selecting animals of resistant genotype for breeding, have recently been adopted by the Netherlands and other European countries. Here we assess the effectiveness of a breeding programme based on selecting rams of resistant genotype to obtain outbreak control in classical scrapie-affected sheep flocks under field conditions. In six commercially-run flocks following this breeding strategy, we used genotyping to monitor the genotype distribution, and tonsil biopsies and post-mortem analyses to monitor the occurrence of scrapie infection. The farmers were not informed about the monitoring results until the end of the study period of six years. We used a mathematical model of scrapie transmission to analyze the monitoring data and found that where the breeding scheme was consistently applied, outbreak control was obtained after at most four years. Our results also show that classical scrapie control can be obtained before the frequency of non-resistant animals is reduced to zero in the flock. This suggests that control at the national scale can be obtained without a loss of genetic polymorphisms from any of the sheep breeds.


Assuntos
Cruzamento , Genótipo , Scrapie/etiologia , Scrapie/prevenção & controle , Ovinos/genética , Animais , Masculino , Países Baixos/epidemiologia , Scrapie/epidemiologia , Scrapie/genética , Estações do Ano
16.
Vet Res ; 42: 21, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21314904

RESUMO

To establish bovine spongiform encephalopathy (BSE) public health protection measures it is important to precisely define the cattle tissues considered as specified risk materials (SRM). To date, in pre-clinical BSE infected cattle, no evidence of the BSE agent had been found in the gut outside of the ileal Peyer's Patches. This study was undertaken to determine when and where the pathological prion protein (PrPSc) and/or BSE infectivity can be found in the small intestine of cattle 4 to 6 months of age, orally challenged with BSE. Samples of the jejunum, the ileum and the ileocaecal junction from 46 BSE infected cattle, culled from 1 up to 44 months post infection (mpi) were examined by immunohistochemistry. Samples from cattle 8 mpi to 20 mpi were additionally studied by PTA Western blot, rapid tests, and by mouse (TgbovXV) bioassay. In doing so nearly all of the cattle, from 4 up to 44 mpi, had detectable amounts of PrPSc and/or infectivity in the distal ileum. In the distal ileum clear time-dependent variations were visible concerning the amount of PrPSc, the tissue structures affected, and the cells involved. BSE infectivity was found not only in the ileum and ileocaecal junction but also in the jejunum. The systematic approach of this study provides new data for qualitative and quantitative risk assessments and allows defining bovine SRM more precisely.


Assuntos
Encefalopatia Espongiforme Bovina/patologia , Íleo/patologia , Jejuno/patologia , Proteínas PrPSc/análise , Envelhecimento , Animais , Western Blotting/veterinária , Bovinos , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Camundongos , Camundongos Transgênicos , Medição de Risco
17.
Vet Microbiol ; 259: 109166, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217040

RESUMO

Chlamydia gallinacea is a recently discovered and widespread obligate intracellular bacterium in chickens. In chickens, infections appear to be asymptomatic, but can result in reduced weight gain in broilers. Molecular typing revealed C. gallinacea is genetically diverse which might lead to differences in pathogenic potential between strains. However, studies about the pathogenesis of different C. gallinacea strains are still limited. In this study, the pathogenesis of C. gallinacea strain NL_G47 was investigated in three consecutive animal experiments. The first experiment served as a pilot in which a maximum culturable dose was administered orally to 13 chickens. Excretion of chlamydial DNA in cloacal swabs was measured during 11 days post infection, but no clinical signs were observed. The second and third experiment were a repetition of the first experiment, but now chickens were sacrificed at consecutive time points to investigate tissue dissemination of C. gallinacea. Again excretion of chlamydial DNA in cloacal swabs was detected and no clinical signs were observed in line with the results of the first experiment. PCR and immunohistochemistry of tissue samples revealed C. gallinacea infected the epithelium of the jejunum, ileum and caecum. Furthermore, C. gallinacea could be detected in macrophages in the lamina propria and in follicular dendritic cells (FDCs) of the B cell follicles in the caecal tonsil. Results of serology showed a systemic antibody response from day seven or eight and onward in all three experiments. The experiments with strain NL_G47 confirmed observations from field studies that C. gallinacea infection does not result in acute clinical disease and mainly resides in the epithelium of the gut. Whether the presence of C. gallinacea results in chronic persistent infections with long term and less obvious health effects in line with observations on other infections caused by Chlamydiae, needs further investigation.


Assuntos
Galinhas/microbiologia , Infecções por Chlamydia/veterinária , Chlamydia/patogenicidade , Doenças das Aves Domésticas/microbiologia , Aves Domésticas/microbiologia , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/microbiologia , Macrófagos/microbiologia , Doenças das Aves Domésticas/imunologia , Virulência
18.
Sci Rep ; 11(1): 1477, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446733

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that is pathogenic to ruminants and humans. The virus is endemic to Africa and the Arabian Peninsula where outbreaks are characterized by abortion storms and mortality of newborns, particularly in sheep herds. Vector competence experiments in laboratory settings have suggested that over 50 mosquito species are capable of transmitting RVFV. Transmission of mosquito-borne viruses in the field is however influenced by numerous factors, including population densities, blood feeding behavior, extrinsic incubation period, longevity of vectors, and viremia levels in vertebrate hosts. Animal models to study these important aspects of RVFV transmission are currently lacking. In the present work, RVFV was transmitted to European (Texel-swifter cross-breed) lambs by laboratory-reared Aedes aegypti mosquitoes that were infected either by membrane feeding on a virus-spiked blood meal or by feeding on lambs that developed viremia after intravenous inoculation of RVFV. Feeding of mosquitoes on viremic lambs resulted in strikingly higher infection rates as compared to membrane feeding. Subsequent transmission of RVFV from lamb to lamb by infected mosquitoes was highly efficient in both models. The animal models described here can be used to study mosquito-mediated transmission of RVFV among the major natural target species and to evaluate the efficacy of vaccines against mosquito-mediated RVFV infection.


Assuntos
Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/metabolismo , Aedes/virologia , Animais , Surtos de Doenças , Vetores de Doenças , Modelos Animais , Mosquitos Vetores/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Carneiro Doméstico/virologia
19.
NPJ Vaccines ; 6(1): 8, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420095

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that causes severe outbreaks among wild and domesticated ruminants, of which sheep are the most susceptible. Outbreaks are characterised by high mortality rates among new-born lambs and abortion storms, in which all pregnant ewes in a flock may abort their foetuses. In endemic areas, Rift Valley fever (RVF) can be controlled by vaccination with either inactivated or live-attenuated vaccines. Inactivated vaccines are safe for animals during all physiological stages, including pregnancy. However, optimal efficacy of these vaccines depends on multiple vaccinations and yearly re-vaccination. Live-attenuated vaccines are generally highly efficacious after a single vaccination, but currently available live-attenuated vaccines may transmit to the ovine foetus, resulting in stillbirths, congenital malformations or abortion. We have previously reported the development of a novel live-attenuated RVFV vaccine, named RVFV-4s. This vaccine virus was created by splitting the M genome segment and deleting the major virulence determinant NSs, and was shown to be safe even for the most susceptible species, including pregnant ewes. The demonstrated efficacy and safety profile suggests that RVFV-4s holds promise for veterinary and human application. The RVFV-4s vaccine for veterinary application, here referred to as vRVFV-4s, was shown to provide complete protection after a single vaccination of lambs, goats and cattle. In this work, we evaluated the efficacy of the vRVFV-4s vaccine in pregnant ewes. Anticipating on the extremely high susceptibility of pregnant ewes for RVFV, both a single vaccination and double vaccination were evaluated in two independent experiments. The combined results suggest that a single vaccination with vRVFV-4s is sufficient to protect pregnant ewes and to prevent transmission to the ovine foetus.

20.
Sci Rep ; 11(1): 16516, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389764

RESUMO

Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/patogenicidade , Chlamydophila psittaci/patogenicidade , Doenças das Aves Domésticas/microbiologia , Psitacose/veterinária , Animais , Embrião de Galinha , Galinhas/microbiologia , Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydophila psittaci/genética , Estudos de Associação Genética , Filogenia , Psitacose/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA