Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38466933

RESUMO

OBJECTIVES: It is well-known that long-term osteoarthritis prognosis is not improved by corticosteroid treatments. Here we investigate what could underlie this phenomenon by measuring the short term corticosteroid response of OA-Mf. METHODS: We determined the genome-wide transcriptomic response to corticosteroids of end-stage osteoarthritic joint synovial macrophages (OA-Mf). This was compared with LPS-tolerized and ß-glucan-trained circulating blood monocyte-derived macrophage models. RESULTS: Upon corticosteroid stimulation, the trained and tolerized macrophages significantly alter the abundance of 201 and 257 RNA transcripts, respectively. By contrast, by the same criteria, OA-Mf have a very restricted corticosteroid response of only 12 RNA transcripts. Furthermore, while metalloproteinases 1, -2, -3 and -10 expression clearly distinguish OA-Mf from both the tolerized and trained macrophage models, OA-Mf Interleukin 1 (IL1), chemokine (CXCL) and cytokine (CCL) family member profiles resemble the tolerized macrophage model, with the exception that OA-Mf show high levels of CCL20. CONCLUSION: Terminal osteoarthritis joints therefore harbor macrophages with an inflammatory state that closely resembles the tolerized macrophage state and this is compounded by a weak corticosteroid response capacity that may explain the lack of positive long-term effects of corticosteroid treatment for osteoarthritis patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38216750

RESUMO

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA