Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411283

RESUMO

We measured the impact of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Twelve healthy, male adults (age: 24 ± 3 years, body mass index: 23.7 ± 3.1 kg/m2 ) were subjected to 14 days of strict bed rest with unilateral blood flow restriction performed three times daily in three 5 min cycles (200 mmHg). Participants consumed deuterium oxide and we collected blood and saliva samples throughout 2 weeks of bed rest. Before and immediately after bed rest, lean body mass (dual-energy X-ray absorptiometry scan) and thigh muscle volume (magnetic resonance imaging scan) were assessed in both the blood flow restricted (BFR) and control (CON) leg. Muscle biopsies were collected and unilateral muscle strength (one-repetition maximum; 1RM) was assessed for both legs before and after the bed rest period. Bed rest resulted in 1.8 ± 1.0 kg lean body mass loss (P < 0.001). Thigh muscle volume declined from 7.1 ± 1.1 to 6.7 ± 1.0 L in CON and from 7.0 ± 1.1 to 6.7 ± 1.0 L in BFR (P < 0.001), with no differences between treatments (P = 0.497). In addition, 1RM leg extension strength decreased from 60.2 ± 10.6 to 54.8 ± 10.9 kg in CON and from 59.2 ± 12.1 to 52.9 ± 12.0 kg in BFR (P = 0.014), with no differences between treatments (P = 0.594). Muscle protein synthesis rates during bed rest did not differ between the BFR and CON leg (1.11 ± 0.12 vs. 1.08 ± 0.13%/day, respectively; P = 0.302). Two weeks of bed rest substantially reduces skeletal muscle mass and strength. Blood flow restriction during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. KEY POINTS: Bed rest, often necessary for recovery from illness or injury, leads to the loss of muscle mass and strength. It has been postulated that blood flow restriction may attenuate the loss of muscle mass and strength during bed rest. We investigated the effect of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Blood flow restriction applied during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. Blood flow restriction is not effective in preventing muscle atrophy during a prolonged period of bed rest.

2.
Amino Acids ; 56(1): 8, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315260

RESUMO

Plant-derived proteins are generally believed to possess lesser anabolic properties when compared with animal-derived proteins. This is, at least partly, attributed to the lower leucine content of most plant-derived proteins. Corn protein has a leucine content that is highest among most plant-derived proteins and it even exceeds the levels observed in animal-derived proteins such as whey protein. Therefore, this study aimed to compare muscle protein synthesis rates following the ingestion of 30 g corn protein and a 30 g blend of corn plus milk protein with 30 g milk protein. In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received primed continuous L-[ring-13C6]-phenylalanine infusions and ingested 30 g corn protein (CORN), 30 g milk protein (MILK), or a 30 g proteinblend with 15 g corn plus 15 g milk protein (CORN + MILK). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. The results show that Ingestion of protein increased myofibrillar protein synthesis rates from basal post-absorptive values in all treatments(P < 0.001). Post-prandial myofibrillar protein synthesis rates did not differ between CORN vs MILK (0.053 ± 0.013 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.90), or between CORN + MILK vs MILK (0.052 ± 0.024 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.92). Ingestion of 30 g corn protein, 30 g milk protein, or a blend of 15 g corn plus 15 g milk protein robustly increases muscle protein synthesis rates in young males. The muscle protein synthetic response to the ingestion of 30 g corn-derived protein does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Clinical Trial Registry number. NTR6548 (registration date: 27-06-2017) https://www.trialregister.nl/ .


Assuntos
Proteínas do Leite , Proteínas Musculares , Masculino , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Leucina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Humanos , Adulto Jovem , Adulto
3.
Eur J Nutr ; 63(3): 893-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228945

RESUMO

PURPOSE: Plant-derived proteins have received considerable attention as an alternative to animal-derived proteins. However, plant-derived proteins are considered to have less anabolic properties when compared with animal-derived proteins. The lower muscle protein synthesis rates following ingestion of plant- compared with animal-derived protein have been attributed to the lower essential amino acid content of plant-derived proteins and/or their specific amino acid deficiencies. This study aimed to compare post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein with 30 g milk-derived protein in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 young males (24 ± 3 y) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g pea (PEA) or 30 g milk-derived protein (MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent post-prandial muscle protein synthesis rates. RESULTS: MILK increased plasma essential amino acid concentrations more than PEA over the 5 h post-prandial period (incremental area under curve 151 ± 31 vs 102 ± 15 mmol∙300 min∙L-1, respectively; P < 0.001). Ingestion of both MILK and PEA showed a robust muscle protein synthetic response with no significant differences between treatments (0.053 ± 0.013 and 0.053 ± 0.017%∙h-1, respectively; P = 0.96). CONCLUSION: Post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein do not differ from the response following ingestion of an equivalent amount of milk-derived protein. International Clinical Trials Registry Platform (NTR6548; 27-06-2017).


Assuntos
Proteínas do Leite , Pisum sativum , Adulto , Masculino , Adulto Jovem , Aminoácidos Essenciais/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Proteínas Musculares , Músculo Esquelético/metabolismo , Período Pós-Prandial , Humanos
4.
Support Care Cancer ; 32(5): 325, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700712

RESUMO

People with advanced cancer and cachexia experience significant body weight loss, adversely impacting physical function and quality of life (QOL). Effective, evidence-based treatments for cancer cachexia are lacking, leaving patients with unmet needs. Exercise holds promise to improve patient QOL. However, information on patients' experiences of exercise, including their ability to cope with structured exercise, is limited. PURPOSE: To explore patient experiences completing a structured, supervised exercise program for people with cachexia due to advanced cancer. METHODS: Semi-structured interviews were conducted with participants enrolled in a phase II feasibility, randomized controlled trial to explore their experiences of an 8-week virtually supervised exercise program delivered via videoconference technology. Interviews were analysed using reflexive thematic analysis. RESULTS: Seventeen participants completed interviews (female n = 9, 53%). Main interview themes included the following: (1) Deciding to exercise involves balancing concerns and expectations, (2) the exercise program is a positive experience, and (3) moving forward after the exercise program. While some participants initially held doubts about their physical capabilities and exercise safety, most wanted to exercise to enhance their wellbeing. Participants described the exercise program as a positive experience, offering diverse benefits. Some would have preferred in-person exercise, but all agreed the virtual format increased convenience. Participants emphasized the need to recommend the program to others in similar circumstances. They underscored the necessity and desire for ongoing support to sustain their new exercise habits. CONCLUSION: Based on patient experiences, virtually supervised exercise programming appears to be feasible and meaningful to people with advanced cancer and cachexia.


Assuntos
Caquexia , Terapia por Exercício , Neoplasias , Pesquisa Qualitativa , Qualidade de Vida , Humanos , Caquexia/etiologia , Caquexia/terapia , Feminino , Neoplasias/complicações , Neoplasias/psicologia , Masculino , Pessoa de Meia-Idade , Terapia por Exercício/métodos , Idoso , Adulto , Estudos de Viabilidade , Comunicação por Videoconferência , Entrevistas como Assunto
5.
Gerontology ; 70(3): 290-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38109855

RESUMO

INTRODUCTION: Microvascular perfusion is essential for post-exercise skeletal muscle recovery to ensure adequate delivery of nutrients and growth factors. This study assessed the relationship between various indices of muscle fiber capillarization and microvascular perfusion assessed by contrast-enhanced ultrasound (CEUS) at rest and during recovery from a bout of resistance exercise in older adults. METHODS: Sixteen older adults (72 ± 6 y, 5/11 male/female) participated in an experimental test day during which a muscle biopsy was collected from the vastus lateralis and microvascular perfusion was determined by CEUS at rest and at 10 and 40 min following a bout of resistance exercise. Immunohistochemistry was performed on muscle tissue samples to determine various indices of both mixed and fiber-type-specific muscle fiber capillarization. RESULTS: Microvascular blood volume at t = 10 min was higher compared with rest and t = 40 min (27.2 ± 4.7 vs. 3.9 ± 4.0 and 7.0 ± 4.9 AU, respectively, both p < 0.001). Microvascular blood volume at t = 40 min was higher compared with rest (p < 0.001). No associations were observed between different indices of mixed muscle fiber capillarization and microvascular blood volume at rest and following exercise. A moderate (r = 0.59, p < 0.05) and strong (r = 0.81, p < 0.001) correlation was observed between type II muscle fiber capillary-to-fiber ratio and the microvascular blood volume increase from rest to t = 10 and t = 40 min, respectively. In addition, type II muscle fiber capillary contacts and capillary-to-fiber perimeter exchange index were strongly correlated with the microvascular blood volume increase from rest to t = 40 min (r = 0.66, p < 0.01 and r = 0.64, p < 0.01, respectively). CONCLUSION: Resistance exercise strongly increases microvascular blood volume for at least 40 min after exercise cessation in older adults. This resistance exercise-induced increase in microvascular blood volume is strongly associated with type II muscle fiber capillarization in older adults.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Masculino , Feminino , Idoso , Músculo Esquelético/patologia , Ultrassonografia , Perfusão , Exercício Físico/fisiologia
6.
Int J Sport Nutr Exerc Metab ; 34(4): 223-231, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458181

RESUMO

This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between -1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7-6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5-48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707-3,488] µm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132-147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23-26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.


Assuntos
Composição Corporal , Aptidão Cardiorrespiratória , Força Muscular , Músculo Esquelético , Treinamento Resistido , Humanos , Feminino , Idoso , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Densidade Óssea , Força da Mão , Consumo de Oxigênio , Absorciometria de Fóton , Levantamento de Peso/fisiologia , Teste de Tolerância a Glucose , Pessoa de Meia-Idade
7.
Int J Sport Nutr Exerc Metab ; 34(4): 189-198, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604602

RESUMO

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.


Assuntos
Colágeno , Estudos Cross-Over , Glicina , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Glicina/sangue , Glicina/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Período Pós-Prandial , Exercício Físico/fisiologia , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Aminoácidos/sangue , Aminoácidos/administração & dosagem , Músculo Esquelético/metabolismo
9.
Front Nutr ; 11: 1391750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812936

RESUMO

Stable isotopes are routinely applied to determine the impact of factors such as aging, disease, exercise, and feeding on whole-body protein metabolism. The most common approaches to quantify whole-body protein synthesis, breakdown, and oxidation rates and net protein balance are based on the quantification of plasma amino acid kinetics. In the postabsorptive state, plasma amino acid kinetics can easily be assessed using a constant infusion of one or more stable isotope labeled amino acid tracers. In the postprandial state, there is an exogenous, dietary protein-derived amino acid flux that needs to be accounted for. To accurately quantify both endogenous as well as exogenous (protein-derived) amino acid release in the circulation, the continuous tracer infusion method should be accompanied by the ingestion of intrinsically labeled protein. However, the production of labeled protein is too expensive and labor intensive for use in more routine research studies. Alternative approaches have either assumed that 100% of exogenous amino acids are released in the circulation or applied an estimated percentage based on protein digestibility. However, such estimations can introduce large artifacts in the assessment of whole-body protein metabolism. The preferred estimation approach is based on the extrapolation of intrinsically labeled protein-derived plasma bioavailability data obtained in a similar experimental design setting. Here, we provide reference data on exogenous plasma amino acid release that can be applied to allow a more accurate routine assessment of postprandial protein metabolism. More work in this area is needed to provide a more extensive reference data set.

10.
Bone ; 188: 117216, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074570

RESUMO

INTRODUCTION: This randomized, cross-over trial assessed the effect of a single bout of high-impact exercise on serum markers of bone formation and bone resorption over a 24 h period. METHODS: Twenty healthy males and females performed a single bout of brief jumping exercise (EXC) or no exercise (CON), 55 min following consumption of a standard breakfast. Blood markers of bone formation (P1NP) and bone resorption (CTX-I) were assessed before (t = 0 h) and over a 5 h period after breakfast, and following 24 h of post-exercise recovery (t = 24 h). RESULTS: Serum CTX-I concentrations decreased during the 5 h postprandial period (time-effect, P < 0.001) with no differences between conditions (time x condition, P = 0.14). After a ~ 16 % decline during the first 30 min following breakfast, serum P1NP concentrations gradually returned to baseline values during the 5 h postprandial period, with no differences in the overall response between conditions (time-effect, P < 0.001; time x condition, P = 0.25). Fasted serum CTX-I concentrations decreased from 0.33 ± 0.15 and 0.35 ± 0.15 ng/mL at baseline, to 0.31 ± 0.13 and 0.31 ± 0.16 ng/mL at t = 24 h in CON and EXC, respectively, with no differences between conditions (time-effect, P < 0.01; time x condition, P = 0.70). Fasted serum P1NP concentrations did not change from baseline to t = 24 h in both CON (baseline: 76 ± 27 ng/mL, t = 24 h: 79 ± 26 ng/mL) and EXC (baseline: 80 ± 24 ng/mL, t = 24 h: 77 ± 29 ng/mL; time-effect, P = 0.89), with no differences between conditions (time x condition, P = 0.22). CONCLUSION: High-impact exercise does not modulate the concentrations of the serum marker of bone formation P1NP and the serum marker of bone resorption CTX-I throughout a 24 h recovery period in healthy adults.

11.
Eur J Sport Sci ; 24(7): 938-949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956794

RESUMO

Knee osteoarthritis is associated with deficits in muscle strength, muscle mass, and physical functioning. These muscle-related deficits are acutely exacerbated following total knee arthroplasty (TKA) and persist long after surgery, despite the application of standardized rehabilitation programs that include physical/functional training. Resistance exercise training (RET) has been shown to be a highly effective strategy to improve muscle-related outcomes in healthy as well as clinical populations. However, the use of RET in traditional rehabilitation programs after TKA is limited. In this narrative review, we provide an updated view on whether adding RET to the standard rehabilitation (SR) in the recovery period (up to 1 year) after TKA leads to greater improvements in muscle-related outcomes when compared to SR alone. Overall, research findings clearly indicate that both muscle strength and muscle mass can be improved to a greater extent with RET-based rehabilitation compared to SR. Additionally, measures of physical functioning that rely on quadriceps strength and balance (e.g., stair climbing, chair standing, etc.) also appear to benefit more from a RET-based program compared to SR, especially in patients with low levels of physical functioning. Importantly though, for RET to be optimally effective, it should be performed at 70%-80% of the one-repetition maximum, with 3-4 sets per exercise, with a minimum of 3 times per week for 8 weeks. Based upon this narrative review, we recommend that such high-intensity progressive RET should be incorporated into standard programs during rehabilitation after TKA.


Assuntos
Artroplastia do Joelho , Força Muscular , Osteoartrite do Joelho , Treinamento Resistido , Humanos , Artroplastia do Joelho/reabilitação , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/reabilitação , Músculo Quadríceps/fisiologia , Equilíbrio Postural
12.
Bone Rep ; 21: 101767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694186

RESUMO

Background: Bone health may be a concern in Paralympic athletes, given the presence of multiple risk factors predisposing these athletes to low bone mineral density (BMD). Objective: We aimed to assess the prevalence of low BMD among Paralympic athletes participating in various sport disciplines, and to identify potential risk factors for low BMD. Methods: Seventy Paralympic athletes, of whom 51 % were wheelchair-dependent, were included in this cross-sectional study. BMD of the whole-body, lumbar spine, total hip, and femoral neck were assessed by dual-energy x-ray absorptiometry. Comparisons between groups were conducted by one-way ANOVA, and regression analyses were conducted to identify potential risk factors for low BMD. Results: The prevalence of low BMD (Z-score < -1.0) was highest at femoral neck (34 %), followed by total hip (31 %), whole-body (21 %), and lumbar spine (18 %). Wheelchair-dependent athletes had significantly lower BMD Z-scores compared to the non-wheelchair-dependent athletes at whole-body level (-0.5 ± 1.4 vs 0.2 ± 1.3; P = 0.04), total hip (-1.1 ± 1.2 vs 0.0 ± 1.1; P < 0.01), and femoral neck (-1.0 ± 1.3 vs -0.1 ± 1.2; P < 0.01). At the lumbar spine, low BMD was completely absent in wheelchair basketball and tennis players. Regression analyses identified body mass, wheelchair dependence, and type of sport, as the main risk factors for low BMD. Conclusions: In this cohort of Paralympic athletes, low BMD is mainly present at the hip, and to a lesser extent at the whole-body and lumbar spine. The most prominent risk factors for low BMD in Paralympic athletes are related to mechanical loading patterns, including wheelchair use, the type of sport, and body mass.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39007407

RESUMO

BACKGROUND: Mitochondria represent key organelles influencing cellular homeostasis and have been implicated in the signalling events regulating protein synthesis. METHODS: We examined whether mitochondrial bioenergetics (oxidative phosphorylation and reactive oxygen species (H2O2) emission, ROS) measured in vitro in permeabilized muscle fibres represent regulatory factors for integrated daily muscle protein synthesis rates and skeletal muscle mass changes across the spectrum of physical activity, including free-living and bed-rest conditions: n = 19 healthy, young men (26 ± 4 years, 23.4 ± 3.3 kg/m2) and following 12 weeks of resistance-type exercise training: n = 10 healthy older men (70 ± 3 years, 25.2 ± 2.1 kg/m2). Additionally, we evaluated the direct relationship between attenuated mitochondrial ROS emission and integrated daily myofibrillar and sarcoplasmic protein synthesis rates in genetically modified mice (mitochondrial-targeted catalase, MCAT). RESULTS: Neither oxidative phosphorylation nor H2O2 emission were associated with muscle protein synthesis rates in healthy young men under free-living conditions or following 1 week of bed rest (both P > 0.05). Greater increases in GSSG concentration were associated with greater skeletal muscle mass loss following bed rest (r = -0.49, P < 0.05). In older men, only submaximal mitochondrial oxidative phosphorylation (corrected for mitochondrial content) was positively associated with myofibrillar protein synthesis rates during exercise training (r = 0.72, P < 0.05). However, changes in oxidative phosphorylation and H2O2 emission were not associated with changes in skeletal muscle mass following training (both P > 0.05). Additionally, MCAT mice displayed no differences in myofibrillar (2.62 ± 0.22 vs. 2.75 ± 0.15%/day) and sarcoplasmic (3.68 ± 0.35 vs. 3.54 ± 0.35%/day) protein synthesis rates when compared with wild-type mice (both P > 0.05). CONCLUSIONS: Mitochondrial oxidative phosphorylation and reactive oxygen emission do not seem to represent key factors regulating muscle protein synthesis or muscle mass regulation across the spectrum of physical activity.

14.
J Acad Nutr Diet ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763462

RESUMO

BACKGROUND: Although resting metabolic rate (RMR) is crucial for understanding athletes' energy requirements, limited information is available on the RMR of Paralympic athletes. OBJECTIVE: The aim of this study was to determine RMR and its predictors in a diverse cohort of Paralympic athletes and evaluate the agreement between measured and predicted RMR from both newly developed and pre-existing equations. DESIGN: This cross-sectional study, conducted between September 2020 and September 2022 in the Netherlands and Norway, assessed RMR in Paralympic athletes by means of ventilated hood indirect calorimetry and body composition by means of dual-energy x-ray absorptiometry. PARTICIPANTS: Sixty-seven Paralympic athletes (male: n = 37; female: n = 30) competing in various sports, with a spinal cord disorder (n = 22), neurologic condition (n = 8), limb deficiency (n = 18), visual or hearing impairment (n = 7), or other disability (n = 12) participated. MAIN OUTCOME MEASURES: RMR, fat-free mass (FFM), body mass, and triiodothyronine (T3) concentrations were assessed. STATISTICAL ANALYSES: Multiple regression analyses were conducted with height, FFM, body mass, sex, T3 concentration, and disabilities as potential predictors of RMR. Differences between measured and predicted RMRs were analyzed for individual accuracy, root mean square error, and intraclass correlation. RESULTS: Mean ± SD RMR was 1386 ± 258 kcal/d for females and 1686 ± 302 kcal/d for males. Regression analysis identified FFM, T3 concentrations, and the presence of a spinal cord disorder, as the main predictors of RMR (adjusted R2 = 0.71; F = 50.3; P < .001). The novel prediction equations based on these data, as well as pre-existing equations of Chun and colleagues and Nightingale and Gorgey performed well on accuracy (>60% of participants within 10% of measured RMR), had good reliability (intraclass correlation >0.78), and low root mean square error (≤141 kcal). CONCLUSIONS: FFM, total T3 concentrations, and presence of spinal cord disorder are the main predictors of RMR in Paralympic athletes. Both the current study's prediction equations and those from Chun and colleagues and Nightingale and Gorgey align well with measured RMR, offering accurate prediction equations for the RMR of Paralympic athletes.

15.
Med Sci Sports Exerc ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086044

RESUMO

INTRODUCTION: Protein supplementation increases post-exercise muscle protein synthesis rates and, as such, supports exercise-induced muscle conditioning. Collagen protein has been suggested as the preferred protein source to stimulate muscle connective protein synthesis rates during recovery from exercise. Here we assessed the effects of hydrolyzed collagen peptide supplementation on both myofibrillar as well as muscle connective protein synthesis rates during one week of strenuous resistance exercise training. METHODS: In a randomized, double-blind, parallel design, 25 young men (24 ± 3 y, 76.9 ± 6.4 kg) were selected to perform one week of intense resistance-type exercise training. Subjects were randomly assigned into two groups receiving either 15 g hydrolyzed collagen peptides (COL) or a non-caloric placebo (PLA) twice daily during the intervention. Subjects were administered deuterated water (2H2O) daily, with blood and skeletal muscle tissue samples being collected prior to and after the intervention to determine daily myofibrillar and muscle connective protein synthesis rates. RESULTS: Post-absorptive plasma glycine, proline, and hydroxyproline concentrations increased following collagen peptide supplementation (p < 0.05) and showed higher levels when compared to the placebo group (p < 0.05). Daily muscle connective protein synthesis rates during the intervention period exceeded myofibrillar protein synthesis rates (1.99 ± 0.38 versus 1.34 ± 0.23 %/d, respectively; p < 0.001). Collagen peptide supplementation did not result in higher myofibrillar or muscle connective protein synthesis rates (1.34 ± 0.19 and 1.97 ± 0.47 %/d, respectively) when compared to the placebo group (1.34 ± 0.27 and 2.00 ± 0.27 %/d, respectively; p > 0.05). CONCLUSIONS: Collagen peptide supplementation (2 x 15 g daily) does not increase myofibrillar or muscle connective protein synthesis rates during one week of intense resistance exercise training in young, recreational athletes.

16.
Med Sci Sports Exerc ; 56(5): 963-971, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194704

RESUMO

PURPOSE: Advanced insight in energy requirements of Paralympic athletes is imperative for optimizing their nutritional counseling. Given the lack of accurate data on total daily energy expenditure (TDEE) of Paralympic athletes, this study aimed to assess energy expenditure and nutritional intake of a large cohort of Paralympic athletes, across different sports and disabilities. METHODS: In this cross-sectional study, 48 Dutch and Norwegian Paralympic athletes (19 male/29 female) with various disabilities, competing in Para cycling, wheelchair tennis, wheelchair basketball, Para Nordic skiing, and alpine skiing participated. TDEE was assessed by the gold standard doubly labeled water method over a 14-d period, resting metabolic rate by ventilated hood indirect calorimetry, energy intake by three unannounced 24-h dietary recalls, body composition by dual-energy x-ray absorptiometry, and exercise training duration by a training log. RESULTS: Mean TDEE was 2908 ± 797 kcal·d -1 , ranging from 2322 ± 340 kcal·d -1 for wheelchair basketball players to 3607 ± 1001 kcal·d -1 for Para cyclists. Regression analysis identified fat-free mass, exercise duration, and the presence of a spinal cord disorder as the primary predictors of TDEE, explaining up to 73% of the variance in TDEE. Athletes' energy intake (2363 ± 905 kcal·d -1 ) was below their TDEE, whereas their body mass remained constant, indicating underreporting. Carbohydrate intake (4.1 ± 1.9 g·kg -1 body mass) was low, even when considering underreporting, whereas protein intake (1.8 ± 0.6 g·kg -1 body mass) was relatively high. CONCLUSIONS: Paralympic athletes display moderate- to high-energy expenditure, varying across sports and individuals. Much of the variation in TDEE can be attributed to individual differences in fat-free mass and exercise duration. This study establishes the benchmarks for energy requirements of Paralympic athletes, serving as the foundation for future dietary guidelines within this population.


Assuntos
Basquetebol , Paratletas , Humanos , Masculino , Feminino , Água , Estudos Transversais , Metabolismo Energético , Ingestão de Energia , Atletas , Composição Corporal
17.
Clin Nutr ; 43(5): 1073-1078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579369

RESUMO

BACKGROUND & AIM: In hospitalized patients, daily protein intake remains far below WHO requirements for healthy adults (0.8 g·kg-1·d-1) as well as ESPEN guidelines for patients (1.2-1.5 g·kg-1·d-1). Providing access to a pre-sleep protein dense snack between dinner and going to bed may serve as a great opportunity to increase daily energy and protein intake in hospitalized patients. However, it remains to be assessed whether protein provision prior to sleep effectively increases protein intake, or may reduce food intake throughout the remainder of the day(s). The present study evaluated the impact of giving access to a pre-sleep snack on daily energy and protein intake in patients throughout their hospitalization. METHODS: Patients admitted to the surgical wards of the Maastricht University Medical Centre+ were randomly allocated to usual care (n = 51) or given access to a pre-sleep snack (n = 50). The pre-sleep snack consisted of 103 g cheese cubes (30 g protein) provided between 7:30 and 9:30 PM, prior to sleep. All food provided and all food consumed was weighed and recorded throughout (2-7 days) hospitalization. Daily energy and protein intake and distribution were calculated. Data were analyzed by independent T-Tests with P < 0.05 considered as statistically significant. RESULTS: Daily energy intake was higher in the pre-sleep group (1353 ± 424 kcal d-1) when compared to the usual care group (1190 ± 402 kcal·d-1; P = 0.049). Providing patients access to a pre-sleep snack resulted in a 17% (11 ± 9 g) higher daily protein intake (0.81 ± 0.29 g·kg-1·d-1) when compared to the usual care group (0.69 ± 0.28 g·kg-1·d-1; P = 0.045). Protein intake at breakfast, lunch, and dinner did not differ between the pre-sleep and usual care groups (all P > 0.05). CONCLUSION: Providing access to a pre-sleep protein snack, in the form of protein dense food items such as cheese, represents an effective dietary strategy to increase daily energy and protein intake in hospitalized patients. Patients consuming pre-sleep protein snacks do not compensate by lowering energy or protein intake throughout the remainder of the days. Pre-sleep protein dense food provision should be implemented in hospital food logistics to improve the nutritional intake of patients. TRIAL REGISTER NO: NL8507 (https://trialsearch.who.int/).


Assuntos
Proteínas Alimentares , Ingestão de Energia , Hospitalização , Sono , Lanches , Humanos , Masculino , Feminino , Proteínas Alimentares/administração & dosagem , Pessoa de Meia-Idade , Idoso , Sono/fisiologia , Adulto
18.
Cell Rep Med ; : 101667, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106867

RESUMO

Restricted sugar and ketogenic diets can alter energy balance/metabolism, but decreased energy intake may be compensated by reduced expenditure. In healthy adults, randomization to restricting free sugars or overall carbohydrates (ketogenic diet) for 12 weeks reduces fat mass without changing energy expenditure versus control. Free-sugar restriction minimally affects metabolism or gut microbiome but decreases low-density lipoprotein cholesterol (LDL-C). In contrast, a ketogenic diet decreases glucose tolerance, increases skeletal muscle PDK4, and reduces AMPK and GLUT4 levels. By week 4, the ketogenic diet reduces fasting glucose and increases apolipoprotein B, C-reactive protein, and postprandial glycerol concentrations. However, despite sustained ketosis, these effects are no longer apparent by week 12, when gut microbial beta diversity is altered, possibly reflective of longer-term adjustments to the ketogenic diet and/or energy balance. These data demonstrate that restricting free sugars or overall carbohydrates reduces energy intake without altering physical activity, but with divergent effects on glucose tolerance, lipoprotein profiles, and gut microbiome.

19.
Cell Rep Med ; 4(12): 101324, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118410

RESUMO

The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.


Assuntos
Aminoácidos , Recuperação após o Exercício , Humanos , Músculo Esquelético/metabolismo , Ingestão de Alimentos/fisiologia , Proteínas de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA