RESUMO
Introduction: Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods: In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results: We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion: This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
RESUMO
[This corrects the article DOI: 10.3389/fncel.2023.1205261.].
RESUMO
BACKGROUND: Non-alcoholic steatohepatitis (NASH) has become one of the most common liver diseases and is still without approved pharmacotherapy. Lifestyle interventions using exercise and diet change remain the current treatment of choice and even a small weight loss (5-7%) can already have a beneficial effect on NASH. However, the underlying molecular mechanisms of exercise and diet interventions remain largely elusive, and it is unclear whether they exert their health effects via similar or different pathways. METHODS: Ldlr-/-.Leiden mice received a high fat diet (HFD) for 30â¯weeks to establish a severe state of NASH/fibrosis with simultaneous atherosclerosis development. Groups of mice were then either left untreated (control group) or were treated for 20â¯weeks with exercise (running wheel), diet change (switch to a low fat chow diet) or the combination thereof. The liver and distant organs including heart, white adipose tissue (WAT) and muscle were histologically examined. Comprehensive transcriptome analysis of liver, WAT and muscle revealed the organ-specific effects of exercise and diet and defined the underlying pathways. RESULTS: Exercise and dietary change significantly reduced body weight, fat mass, adipocyte size and improved myosteatosis and muscle function with additive effects of combination treatment. WAT inflammation was significantly improved by diet change, tended to be reduced with exercise, and combination therapy had no additive effect. Hepatic steatosis and inflammation were almost fully reversed by exercise and diet change, while hepatic fibrosis tended to be improved with exercise and was significantly improved with diet change. Additive effects for the combination therapy were shown for liver steatosis and associated liver lipids, and atherosclerosis, but not for hepatic inflammation and fibrosis. Pathway analysis revealed complementary effects on metabolic pathways and lipid handling processes, thereby substantiating the added value of combined lifestyle treatment. CONCLUSIONS: Exercise, diet change and the combination thereof can reverse established NASH/fibrosis in obese Ldlr-/-.Leiden mice. In addition, the lifestyle interventions had beneficial effects on atherosclerosis, WAT inflammation and muscle function. For steatosis and other parameters related to adiposity or lipid metabolism, exercise and dietary change affected more distinct pathways that acted complementary when the interventions were combined resulting in an additive effect for the combination therapy on important endpoints including NASH and atherosclerosis. For inflammation, exercise and diet change shared several underlying pathways resulting in a net similar effect when the interventions were combined.
Assuntos
Dieta com Restrição de Gorduras , Cirrose Hepática/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal/fisiologia , Receptores de LDL/genética , Transdução de Sinais/fisiologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Aterosclerose/dietoterapia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/terapia , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/dietoterapia , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de LDL/metabolismoRESUMO
Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr-/-. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr-/-. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.
Assuntos
Aterosclerose/sangue , Aterosclerose/etiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fast Foods/efeitos adversos , Cirrose Hepática/sangue , Cirrose Hepática/etiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapêutico , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/etiologia , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/etiologia , Receptores de LDL/genética , Transcriptoma , Resultado do TratamentoRESUMO
The cellular composition of an atherosclerotic lesion is determined by cell infiltration, proliferation, and apoptosis. The tumor suppressor gene retinoblastoma (Rb) has been shown to regulate both cell proliferation and cell death in many cell types. To study the role of macrophage Rb in the development of atherosclerosis, we used apoE-deficient mice with a macrophage-restricted deletion of Rb (Rb(del) mice) and control littermates (Rb(fl) mice). After 12 wk feeding a cholesterol-rich diet, the Rb(del) mice showed a 51% increase in atherosclerotic lesion area with a 39% increase in the relative number of advanced lesions. Atherosclerotic lesions showed a 13% decrease in relative macrophage area and a 46% increase in relative smooth muscle cell area, reflecting the more advanced state of the lesions. The increase in atherosclerosis was independent of in vitro macrophage modified lipoprotein uptake or cytokine production. Whereas macrophage-restricted Rb deletion did not affect lesional macrophage apoptosis, a clear 2.6-fold increase in lesional macrophage proliferation was observed. These studies demonstrate that macrophage Rb is a suppressing factor in the progression of atherosclerosis by reducing macrophage proliferation.
Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/metabolismo , Animais , Apolipoproteínas E/genética , Morte Celular , Proliferação de Células , Colesterol/sangue , Deleção de Genes , Regulação da Expressão Gênica , Masculino , Camundongos , Proteína do Retinoblastoma/genéticaRESUMO
OBJECTIVE: Tumor necrosis factor-alpha (TNFalpha) is a pleiotropic cytokine exerting both inflammatory and cell death modulatory activity, and is thought to play a role in the pathogenesis of atherosclerosis. Studies in mice indicated that TNFalpha affects atherosclerosis minimally or not under conditions that allow fatty streak formation. Here, we examined the possible role of TNFalpha in advanced and complex atherosclerotic lesions. METHODS AND RESULTS: To induce atherosclerosis, TNFalpha-deficient (Tnf-/-) APOE*3-Leiden and control APOE*3-Leiden only mice were fed a cholesterol-rich diet. Comparable levels of plasma cholesterol and triglycerides and the systemic inflammatory parameters, serum amyloid A and soluble intercellular adhesion molecule-1 were found in APOE*3-LeidenTnf-/- and control mice. Although absence of TNFalpha did not affect the quantitative area of atherosclerosis, APOE*3-LeidenTnf-/- mice had a higher relative number of early lesions (46.1% vs. 21.4%) and a lower relative number of advanced lesions (53.9% vs. 78.6%, P=0.04). In addition, the advanced lesions in APOE*3-LeidenTnf-/- mice showed less necrosis (9.9+/-12.1% vs. 23.4+/-19.3% of total lesion area, P=0.04) and an increase in apoptosis (1.5+/-1.5% vs. 0.4+/-0.6% of total nuclei, P=0.03). CONCLUSIONS: Our data indicate that TNFalpha stimulates the formation of lesions towards an advanced phenotype, with more lesion necrosis and a lower incidence of apoptosis.
Assuntos
Apolipoproteínas E/genética , Arteriosclerose/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Aorta/patologia , Apolipoproteína E3 , Apolipoproteínas E/metabolismo , Apoptose , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Colesterol/sangue , Colesterol na Dieta/efeitos adversos , Feminino , Molécula 1 de Adesão Intercelular/sangue , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Necrose , Proteína Amiloide A Sérica/análise , Triglicerídeos/sangueRESUMO
The cellular composition of atherosclerotic lesions is determined by many factors including cell infiltration, proliferation and cell death. Tumor suppressor gene p53 has been shown to regulate both cell proliferation and cell death in many cell types. In the present study, we investigated the role of macrophage p53 in the pathogenesis of early and advanced atherosclerosis. Using the Cre-loxP system we found that absence of macrophage p53 (p53(del)) strongly reduces apoptosis of macrophages both in early and advanced atherosclerotic lesions (-59% and -37%, respectively). Consequently, in advanced atherosclerosis, reduced apoptosis upon absence of macrophage p53, coincided with increased acellular necrotic core formation (+96%), increased macrophage content (+24%), and reduced cholesterol cleft accumulation (-41%). Proliferation was not affected by the absence of macrophage p53 in both early and advanced atherosclerosis. However, these significant changes in lesional cell death did not affect total lesion area in both early and advanced atherosclerosis, neither in the aortic root nor in the aortic arch and thoracic aorta in ApoE-deficient mice. Our data demonstrate that macrophage p53 is an important regulator of macrophage apoptosis, thereby preventing necrotic death of lesional macrophages. The regulation of this cell death balance directly affects lesion composition.
Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Apoptose , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células , Colesterol/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Necrose , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
Here we describe a means to conditionally modify genes at a predefined and localized region of the vasculature using a perivascular drug delivery device (PDD). A 4-hydroxytamoxifen (4-OHT)-eluting PDD was applied around the carotid or femoral artery of a mouse strain carrying both the tamoxifen-inducible and smooth muscle cell (SMC)-specific Cre-recombinase (SM-Cre-ER(T2)) transgene and a stop-floxed beta-galactosidase gene in the Rosa26 locus: the SM-CreER(T2)(ki)/rosa26 mouse. A dose and time curve of 0-10% (w/w) 4-OHT and 0-14 days application of the PDD in SM-CreER(T2)(ki)/rosa26 mice showed optimal gene recombination at 1% (w/w) 4-OHT loading at 7 days post application (carotid artery 2.4+/-1.8%; femoral artery 4.0+/-3.8% of SMCs). The unique 4-OHT-eluting PDD allowed us to achieve SMC-specific recombination in the same order of magnitude as compared to systemic tamoxifen administration. In addition, recombination was completely confined to the PDD-treated vessel wall segment. Thus, local application of a 4-OHT-eluting PDD results in vascular SMC-specific Cre-mediated recombination in SM-CreER(T2)(ki)/rosa26 mice without affecting additional SMCs.