Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Virol ; 98(3): e0185023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415596

RESUMO

Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.


Assuntos
Modelos Animais de Doenças , Vírus da Cinomose Canina , Furões , Sarampo , Infecções por Morbillivirus , Animais , Cães , Humanos , Cinomose/virologia , Vírus da Cinomose Canina/genética , Sarampo/patologia , Vírus do Sarampo/genética , Morbillivirus/genética , Infecções por Morbillivirus/patologia , Primatas , Viremia
2.
PLoS Pathog ; 19(3): e1011214, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897923

RESUMO

Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Furões , Sistema Nervoso Central , Zoonoses
3.
Vet Res ; 54(1): 102, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919808

RESUMO

The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.


Assuntos
Dermatite , Phocoena , Pitiose , Pythium , Animais , Feminino , Dermatite/veterinária , Pitiose/diagnóstico
4.
J Infect Dis ; 223(12): 2020-2028, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043806

RESUMO

Effective clinical intervention strategies for coronavirus disease 2019 (COVID-19) are urgently needed. Although several clinical trials have evaluated use of convalescent plasma containing virus-neutralizing antibodies, levels of neutralizing antibodies are usually not assessed and the effectiveness has not been proven. We show that hamsters treated prophylactically with a 1:2560 titer of human convalescent plasma or a 1:5260 titer of monoclonal antibody were protected against weight loss, had a significant reduction of virus replication in the lungs, and showed reduced pneumonia. Interestingly, this protective effect was lost with a titer of 1:320 of convalescent plasma. These data highlight the importance of screening plasma donors for high levels of neutralizing antibodies. Our data show that prophylactic administration of high levels of neutralizing antibody, either monoclonal or from convalescent plasma, prevent severe SARS-CoV-2 pneumonia in a hamster model, and could be used as an alternative or complementary to other antiviral treatments for COVID-19.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , COVID-19/terapia , Pulmão/patologia , SARS-CoV-2/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , COVID-19/imunologia , Cricetinae , Modelos Animais de Doenças , Humanos , Imunização Passiva , Pulmão/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Soroterapia para COVID-19
5.
J Infect Dis ; 222(5): 820-831, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246148

RESUMO

BACKGROUND: Influenza A virus (IAV) causes a wide range of extrarespiratory complications. However, the role of host factors in these complications of influenza virus infection remains to be defined. METHODS: Here, we sought to use transcriptional profiling, virology, histology, and echocardiograms to investigate the role of a high-fat diet in IAV-associated cardiac damage. RESULTS: Transcriptional profiling showed that, compared to their low-fat counterparts (LF mice), mice fed a high-fat diet (HF mice) had impairments in inflammatory signaling in the lung and heart after IAV infection. This was associated with increased viral titers in the heart, increased left ventricular mass, and thickening of the left ventricular wall in IAV-infected HF mice compared to both IAV-infected LF mice and uninfected HF mice. Retrospective analysis of clinical data revealed that cardiac complications were more common in patients with excess weight, an association which was significant in 2 out of 4 studies. CONCLUSIONS: Together, these data provide the first evidence that a high-fat diet may be a risk factor for the development of IAV-associated cardiovascular damage and emphasizes the need for further clinical research in this area.


Assuntos
Dieta Hiperlipídica , Cardiopatias/virologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/complicações , Animais , Índice de Massa Corporal , Peso Corporal , Citocinas/sangue , Citocinas/genética , Ecocardiografia , Feminino , Perfilação da Expressão Gênica , Coração/virologia , Cardiopatias/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Influenza Humana/complicações , Fator Regulador 7 de Interferon/genética , Interleucina-1beta/genética , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , RNA Viral/metabolismo , Fatores de Risco , Transdução de Sinais/genética , Ubiquitinas/genética
6.
J Gen Virol ; 101(10): 1037-1046, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692644

RESUMO

Human respiratory syncytial virus (HRSV) is the leading cause of severe respiratory tract disease in infants. Most HRSV infections remain restricted to the upper respiratory tract (URT), but in a small percentage of patients the infection spreads to the lower respiratory tract, resulting in bronchiolitis or pneumonia. We have a limited understanding of HRSV pathogenesis and what factors determine disease severity, partly due to the widespread use of tissue-culture-adapted viruses. Here, we studied early viral dissemination and tropism of HRSV in cotton rats, BALB/cJ mice and C57BL/6 mice. We used a novel recombinant (r) strain based on a subgroup A clinical isolate (A11) expressing EGFP [rHRSVA11EGFP(5)]. A recombinant laboratory-adapted HRSV strain [rHRSVA2EGFP(5)] was used as a direct comparison. Our results show that rHRSVA11EGFP(5) replicated to higher viral titres than laboratory-adapted rHRSVA2EGFP(5) in the URT of cotton rats and mice. HRSV-infected cells were detected as early as 2 days post-inoculation in both species in the nasal septa and lungs. Infection was predominantly present in ciliated epithelial cells in cotton rats and in the olfactory mucosa of mice. In our opinion, this study highlights that the choice of virus strain is important when studying HRSV pathogenesis in vivo and demonstrates that A11 is a representative clinical-based virus. Additionally, we show critical differences in tropism and inflammation when comparing HRSV infection of cotton rats and mice.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/patogenicidade , Infecções Respiratórias/virologia , Animais , Bronquiolite Viral/virologia , Modelos Animais de Doenças , Humanos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nariz/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Vírus Sincicial Respiratório Humano/genética , Sistema Respiratório/virologia , Rinite/virologia , Sigmodontinae , Carga Viral , Tropismo Viral , Replicação Viral
7.
PLoS Pathog ; 13(5): e1006371, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28481926

RESUMO

Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.


Assuntos
Vírus da Cinomose Canina/fisiologia , Furões , Infecções por Morbillivirus/virologia , Morbillivirus/fisiologia , Animais , Chlorocebus aethiops , Coinfecção , Genes Reporter , Morbillivirus/patogenicidade , Infecções por Morbillivirus/transmissão , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células Vero , Carga Viral , Internalização do Vírus
8.
Vet Res ; 50(1): 88, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666128

RESUMO

Harbour porpoises (Phocoena phocoena) in the North Sea live in an environment heavily impacted by humans, the consequences of which are a concern for their health. Autopsies carried out on stranded harbour porpoises provide an opportunity to assess health problems in this species. We performed 61 autopsies on live-stranded harbour porpoises, which died following admission to a rehabilitation centre between 2003 and 2016. The animals had stranded on the Dutch (n = 52) and adjacent coasts of Belgium (n = 2) and Germany (n = 7). We assigned probable causes for stranding based on clinical and pathological criteria. Cause of stranding was associated in the majority of cases with pathologies in multiple organs (n = 29) compared to animals with pathologies in a single organ (n = 18). Our results show that the three most probable causes of stranding were pneumonia (n = 35), separation of calves from their mother (n = 10), and aspergillosis (n = 9). Pneumonia as a consequence of pulmonary nematode infection occurred in 19 animals. Pneumonia was significantly associated with infection with Pseudalius inflexus, Halocercus sp., and Torynurus convolutus but not with Stenurus minor infection. Half of the bacterial pneumonias (6/12) could not be associated with nematode infection. Conclusions from this study are that aspergillosis is an important probable cause for stranding, while parasitic infection is not a necessary prerequisite for bacterial pneumonia, and approximately half of the animals (29/61) probably stranded due to multiple causes. An important implication of the observed high prevalence of aspergillosis is that these harbour porpoises suffered from reduced immunocompetence.


Assuntos
Aspergilose/veterinária , Pulmão/patologia , Infecções por Nematoides/veterinária , Phocoena , Pneumonia Bacteriana/veterinária , Pneumonia/veterinária , Animais , Aspergilose/epidemiologia , Bélgica/epidemiologia , Alemanha/epidemiologia , Imunocompetência , Infecções por Nematoides/mortalidade , Infecções por Nematoides/parasitologia , Países Baixos/epidemiologia , Mar do Norte/epidemiologia , Phocoena/imunologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Pneumonia/parasitologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Prevalência
9.
J Infect Dis ; 218(7): 1037-1044, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29373675

RESUMO

The characteristics and risk factors of pigeon paramyxovirus type 1 (PPMV-1) infection in humans are poorly known. We performed virological, pathological, and epidemiological analyses of a Dutch case, and compared the results with those of a US case. Both infections occurred in transplant patients under immunosuppressive therapy and caused fatal respiratory failure. Both virus isolates clustered with PPMV-1, which has pigeons and doves as reservoir. Experimentally inoculated pigeons became infected and transmitted the virus to naive pigeons. Both patients were likely infected by contact with infected pigeons or doves. Given the large populations of feral pigeons with PPMV-1 infection in cities, increasing urbanization, and a higher proportion of immunocompromised individuals, the risk of severe human PPMV-1 infections may increase. We recommend testing for avian paramyxovirus type 1, including PPMV-1, in respiratory disease cases where common respiratory pathogens cannot be identified.


Assuntos
Doenças das Aves/virologia , Galinhas/virologia , Columbidae/virologia , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/isolamento & purificação , Pneumonia/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico , Animais , Evolução Fatal , Feminino , Humanos , Hospedeiro Imunocomprometido , Metagenômica , Pessoa de Meia-Idade , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Pneumonia/patologia , Pneumonia/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fatores de Risco , Virulência , Zoonoses
10.
J Infect Dis ; 217(8): 1237-1246, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29329410

RESUMO

Background: The 1918 Spanish H1N1 influenza pandemic was the most severe recorded influenza pandemic with an estimated 20-50 million deaths worldwide. Even though it is known that influenza viruses can cause extrarespiratory tract complications-which are often severe or even fatal-the potential contribution of extrarespiratory tissues to the pathogenesis of 1918 H1N1 virus infection has not been studied comprehensively. Methods: Here, we performed a time-course study in ferrets inoculated intranasally with 1918 H1N1 influenza virus, with special emphasis on the involvement of extrarespiratory tissues. Respiratory and extrarespiratory tissues were collected after inoculation for virological, histological, and immunological analysis. Results: Infectious virus was detected at high titers in respiratory tissues and, at lower titers in most extrarespiratory tissues. Evidence for active virus replication, as indicated by the detection of nucleoprotein by immunohistochemistry, was observed in the respiratory tract, peripheral and central nervous system, and liver. Proinflammatory cytokines were up-regulated in respiratory tissues, olfactory bulb, spinal cord, liver, heart, and pancreas. Conclusions: 1918 H1N1 virus spread to and induced cytokine responses in tissues outside the respiratory tract, which likely contributed to the severity of infection. Moreover, our data support the suggested link between 1918 H1N1 infection and central nervous system disease.


Assuntos
Citocinas/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/virologia , Replicação Viral/fisiologia , Animais , Citocinas/genética , Furões , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Pulmão/patologia , Infecções por Orthomyxoviridae/patologia , Doenças Respiratórias/virologia , Distribuição Tecidual , Redução de Peso
11.
J Virol ; 90(22): 10209-10219, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27581985

RESUMO

Due to antigenic drift of influenza viruses, seasonal influenza vaccines need to be updated annually. These vaccines are based on predictions of strains likely to circulate in the next season. However, vaccine efficacy is greatly reduced in the case of a mismatch between circulating and vaccine strains. Furthermore, novel antigenically distinct influenza viruses are introduced into the human population from animal reservoirs occasionally and may cause pandemic outbreaks. To dampen the impact of seasonal and pandemic influenza, vaccines that induce broadly protective and long-lasting immunity are preferred. Because influenza virus-specific CD8+ T cells are directed mainly against relatively conserved internal proteins, like nucleoprotein (NP), they are highly cross-reactive and afford protection against infection with antigenically distinct influenza virus strains, so-called heterosubtypic immunity. Here, we used modified vaccinia virus Ankara (MVA) as a vaccine vector for the induction of influenza virus NP-specific CD8+ T cells. To optimize the induction of CD8+ T cell responses, we made several modifications to NP, aiming at retaining the protein in the cytosol or targeting it to the proteasome. We hypothesized that these strategies would increase antigen processing and presentation and thus improve the induction of CD8+ T cell responses. We showed that NP with increased degradation rates improved CD8+ T cell activation in vitro if the amount of antigen was limited or if CD8+ T cells were of low functional avidity. However, after immunization of C57BL/6 mice, no differences were detected between modified NP and wild-type NP (NPwt), since NPwt already induced optimal CD8+ T cell responses. IMPORTANCE: Due to the continuous antigenic drift of seasonal influenza viruses and the threat of a novel pandemic, there is a great need for the development of novel influenza vaccines that offer broadly protective immunity against multiple subtypes. CD8+ T cells can provide immunity against multiple subtypes of influenza viruses by the recognition of relatively conserved internal antigens. In this study, we aimed at optimizing the CD8+ T cell response to influenza A virus by making modifications to influenza A virus nucleoprotein (NP) expressed from the modified vaccinia virus Ankara (MVA) vaccine vector. These modifications resulted in increased antigen degradation, thereby producing elevated levels of peptides that can be presented on major histocompatibility complex (MHC) class I molecules to CD8+ T cells. Although we were unable to increase the NP-specific immune response in the mouse strain used, this approach may have benefits for vaccine development using less-immunogenic proteins.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Ativação Linfocitária/imunologia , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Animais , Anticorpos Antivirais/metabolismo , Antígenos Virais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Reações Cruzadas/imunologia , Cães , Feminino , Células HeLa , Humanos , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/virologia , Proteólise , Proteínas de Ligação a RNA/imunologia , Vacinação/métodos , Vaccinia virus/imunologia , Proteínas do Core Viral/imunologia
12.
Vet Res ; 48(1): 80, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162154

RESUMO

Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.


Assuntos
Macaca fascicularis , Doenças dos Macacos/virologia , Vírus da Doença de Newcastle/fisiologia , Infecções por Paramyxoviridae/virologia , Pneumonia/veterinária , Adulto , Animais , Feminino , Humanos , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/patologia , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia
13.
J Infect Dis ; 214(4): 516-24, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27448390

RESUMO

BACKGROUND: Influenza A viruses can replicate in the olfactory mucosa and subsequently use the olfactory nerve to enter the central nervous system (CNS). It is currently unknown whether intervention strategies are able to reduce or prevent influenza virus replication within the olfactory mucosa and subsequent spread to the CNS. Therefore, we tested the efficacy of homologous vaccination and prophylactic oseltamivir to prevent H5N1 virus CNS invasion via the olfactory nerve in our ferret model. METHODS: Ferrets were vaccinated intramuscularly or received oseltamivir (5 mg/kg twice daily) prophylactically before intranasal inoculation of highly pathogenic H5N1 virus (A/Indonesia/05/2005) and were examined using virology and pathology. RESULTS: Homologous vaccination reduced H5N1 virus replication in the olfactory mucosa and prevented subsequent virus spread to the CNS. However, prophylactic oseltamivir did not prevent H5N1 virus replication in the olfactory mucosa sufficiently, resulting in CNS invasion via the olfactory nerve causing a severe meningoencephalitis. CONCLUSIONS: Within our ferret model, vaccination is more effective than prophylactic oseltamivir in preventing CNS invasion by H5N1 virus via the olfactory nerve. This study highlights the importance of including the olfactory mucosa, olfactory nerve, and CNS tissues in future vaccine and antiviral studies, especially for viruses with a known neurotropic potential.


Assuntos
Antivirais/administração & dosagem , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Meningoencefalite/prevenção & controle , Infecções por Orthomyxoviridae/complicações , Oseltamivir/administração & dosagem , Animais , Quimioprevenção/métodos , Modelos Animais de Doenças , Feminino , Furões , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Injeções Intramusculares , Nervo Olfatório/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Resultado do Tratamento
14.
Am J Pathol ; 185(3): 643-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25555619

RESUMO

To elucidate the pathogenesis and transmission of influenza virus, the ferret model is typically used. To investigate protective immune responses, the use of inbred mouse strains has proven invaluable. Here, we describe a study with isogenic guinea pigs, which would uniquely combine the advantages of the mouse and ferret models for influenza virus infection. Strain 2 isogenic guinea pigs were inoculated with H1N1pdm09 influenza virus A/Netherlands/602/09 by the intranasal or intratracheal route. Viral replication kinetics were assessed by determining virus titers in nasal swabs and respiratory tissues, which were also used to assess histopathologic changes and the number of infected cells. In all guinea pigs, virus titers peaked in nasal secretions at day 2 after inoculation. Intranasal inoculation resulted in higher virus excretion via the nose and higher virus titers in the nasal turbinates than intratracheal inoculation. After intranasal inoculation, infectious virus was recovered only from nasal epithelium; after intratracheal inoculation, it was recovered also from trachea, lung, and cerebrum. Histopathologic changes corresponded with virus antigen distribution, being largely limited to nasal epithelium for intranasally infected guinea pigs and more widespread in the respiratory tract for intratracheally infected guinea pigs. In summary, isogenic guinea pigs show promise as a model to investigate the role of humoral and cell-mediated immunities to influenza and their effect on virus transmission.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Pulmão/patologia , Infecções por Orthomyxoviridae/imunologia , Traqueia/patologia , Administração Intranasal , Animais , Antígenos Virais/imunologia , Cobaias , Imunidade Celular/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Traqueia/imunologia , Replicação Viral
15.
Vet Res ; 47: 28, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861818

RESUMO

Herpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we examined harbor porpoises that stranded alive in the Netherlands, Belgium, and Germany between 2000 and 2014 for herpesvirus infection and associated disease. Porpoises that died or had to be euthanized were autopsied, and samples were collected for virological and pathological analyses. We found one known herpesvirus (Phocoena phocoena herpesvirus type 1, PPHV-1)--a gammaherpesvirus--and two novel herpesviruses (PPHV-2 and PPHV-3)--both alphaherpesviruses--in these porpoises. A genital plaque, in which PPHV-1 was detected, occurred in 1% (1/117) of porpoises. The plaque was characterized by epithelial hyperplasia and intranuclear inclusion bodies that contained herpesvirus-like particles, and that stained positive by a PPHV-1-specific in situ hybridization test. PPHV-2 occurred in the brain of 2% (1/74) of porpoises. This infection was associated with lymphocytic encephalitis, characterized by neuronal necrosis and intranuclear inclusion bodies containing herpesvirus-like particles. PPHV-3 had a prevalence of 5% (4/74) in brain tissue, 5% (2/43) in blowhole swabs, and 2% (1/43) in genital swabs, but was not associated with disease. Phylogenetically, PPHV-1 was identical to a previously reported herpesvirus from a harbor porpoise, PPHV-2 showed closest identity with two herpesviruses from dolphins, and PPHV-3 showed closest identity with a cervid herpesvirus. In conclusion, harbor porpoises may be infected with at least three different herpesviruses, one of which can cause clinically severe neurological disease.


Assuntos
Doenças do Sistema Nervoso Central/veterinária , Doenças dos Genitais Femininos/veterinária , Doenças dos Genitais Masculinos/veterinária , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Phocoena , Animais , Bélgica/epidemiologia , Doenças do Sistema Nervoso Central/epidemiologia , Doenças do Sistema Nervoso Central/virologia , Feminino , Doenças dos Genitais Femininos/epidemiologia , Doenças dos Genitais Femininos/virologia , Doenças dos Genitais Masculinos/epidemiologia , Doenças dos Genitais Masculinos/virologia , Alemanha/epidemiologia , Herpesviridae/classificação , Herpesviridae/genética , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Masculino , Dados de Sequência Molecular , Países Baixos/epidemiologia , Filogenia , Análise de Sequência de DNA/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Emerg Infect Dis ; 21(7): 1205-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079061

RESUMO

A fox circovirus was identified in serum samples from foxes with unexplained neurologic signs by using viral metagenomics. Fox circovirus nucleic acid was localized in histological lesions of the cerebrum by in situ hybridization. Viruses from the family Circoviridae may have neurologic tropism more commonly than previously anticipated.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/isolamento & purificação , Raposas/virologia , Meningoencefalite/veterinária , Animais , Encéfalo/patologia , Encéfalo/virologia , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/virologia , Circovirus/genética , Feminino , Masculino , Meningoencefalite/diagnóstico , Meningoencefalite/virologia , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , Reino Unido
17.
J Virol ; 87(8): 4293-301, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365444

RESUMO

The clinical symptoms caused by infection with influenza A virus vary widely and depend on the strain causing the infection, the dose and route of inoculation, and the presence of preexisting immunity. In most cases, seasonal influenza A viruses cause relatively mild upper respiratory tract disease, while sometimes patients develop an acute severe pneumonia. Heterosubtypic immunity induced by previous infections with influenza A viruses may dampen the development of clinical symptoms caused by infection with influenza A viruses of another subtype, as is the case during influenza pandemics. Here we show that ferrets acquire protective immunity after infection of the upper respiratory tract with a seasonal influenza A(H3N2) virus against subsequent infection with influenza A(H1N1)pdm09 virus inoculated by the intranasal route. However, protective heterosubtypic immunity was afforded locally, since the prior infection with the A(H3N2) virus did not provide protection against the development of pneumonia induced after intratracheal inoculation with the A(H1N1)pdm09 virus. Interestingly, some of these animals developed more severe disease than that observed in naïve control animals. These findings are of interest in light of the development of so-called universal influenza vaccines that aim at the induction of cross-reactive T cell responses.


Assuntos
Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Animais , Modelos Animais de Doenças , Feminino , Furões , Pneumonia Viral/imunologia , Pneumonia Viral/virologia
18.
Vet Res ; 45: 53, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24885647

RESUMO

Detection of influenza virus in oropharyngeal swabs collected during wild bird surveillance is assumed to represent respiratory infection, although intestine is the main site of infection. We tested this assumption by histological examination of the respiratory tract of wild Mallards with virus-positive oropharyngeal swabs. Thirty-two of 125 Mallards tested had viral-RNA positive oropharyngeal swabs. The respiratory tracts of four Mallards with the most virus were examined in detail by immunohistochemistry. None had detectable virus antigen in the respiratory tract, suggesting it was not infected. An alternative explanation is that the oropharynx was contaminated with virus through feeding in surface water or through preening.


Assuntos
Patos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Orofaringe/virologia , Doenças das Aves Domésticas/epidemiologia , Sistema Respiratório/virologia , Animais , Antígenos Virais/análise , Imuno-Histoquímica/veterinária , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suécia/epidemiologia
19.
mSphere ; 9(2): e0074323, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265200

RESUMO

Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE: Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Humanos , Animais , Metapneumovirus/fisiologia , Citologia , Replicação Viral , Infecções por Paramyxoviridae/patologia , Epitélio , Macaca , Tropismo
20.
J Virol ; 86(7): 3975-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278228

RESUMO

The route by which highly pathogenic avian influenza (HPAI) H5N1 virus spreads systemically, including the central nervous system (CNS), is largely unknown in mammals. Especially, the olfactory route, which could be a route of entry into the CNS, has not been studied in detail. Although the multibasic cleavage site (MBCS) in the hemagglutinin (HA) of HPAI H5N1 viruses is a major determinant of systemic spread in poultry, the association between the MBCS and systemic spread in mammals is less clear. Here we determined the virus distribution of HPAI H5N1 virus in ferrets in time and space-including along the olfactory route-and the role of the MBCS in systemic replication. Intranasal inoculation with wild-type H5N1 virus revealed extensive replication in the olfactory mucosa, from which it spread to the olfactory bulb and the rest of the CNS, including the cerebrospinal fluid (CSF). Virus spread to the heart, liver, pancreas, and colon was also detected, indicating hematogenous spread. Ferrets inoculated intranasally with H5N1 virus lacking an MBCS demonstrated respiratory tract infection only. In conclusion, HPAI H5N1 virus can spread systemically via two different routes, olfactory and hematogenous, in ferrets. This systemic spread was dependent on the presence of the MBCS in HA.


Assuntos
Modelos Animais de Doenças , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/virologia , Condutos Olfatórios/virologia , Motivos de Aminoácidos , Animais , Sangue/virologia , Linhagem Celular , Feminino , Furões/sangue , Furões/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/sangue , Influenza Humana/patologia , Condutos Olfatórios/patologia , Processamento de Proteína Pós-Traducional , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA