Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim Cogn ; 27(1): 5, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429436

RESUMO

Humans and many other animal species act in ways that benefit others. Such prosocial behaviour has been studied extensively across a range of disciplines over the last decades, but findings to date have led to conflicting conclusions about prosociality across and even within species. Here, we present a conceptual framework to study the proximate regulation of prosocial behaviour in humans, non-human primates and potentially other animals. We build on psychological definitions of prosociality and spell out three key features that need to be in place for behaviour to count as prosocial: benefitting others, intentionality, and voluntariness. We then apply this framework to review observational and experimental studies on sharing behaviour and targeted helping in human children and non-human primates. We show that behaviours that are usually subsumed under the same terminology (e.g. helping) can differ substantially across and within species and that some of them do not fulfil our criteria for prosociality. Our framework allows for precise mapping of prosocial behaviours when retrospectively evaluating studies and offers guidelines for future comparative work.


Assuntos
Altruísmo , Comportamento Social , Humanos , Animais , Estudos Retrospectivos , Primatas
2.
Phys Life Rev ; 50: 211-225, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39153248

RESUMO

As one of the most specific, yet most diverse of human behaviors, language is shaped by both genomic and extra-genomic evolution. Sharing methods and models between these modes of evolution has significantly advanced our understanding of language and inspired generalized theories of its evolution. Progress is hampered, however, by the fact that the extra-genomic evolution of languages, i.e. linguistic evolution, maps only partially to other forms of evolution. Contrasting it with the biological evolution of eukaryotes and the cultural evolution of technology as the best understood models, we show that linguistic evolution is special by yielding a stationary dynamic rather than stable solutions, and that this dynamic allows the use of language change for social differentiation while maintaining its global adaptiveness. Linguistic evolution furthermore differs from technological evolution by requiring vertical transmission, allowing the reconstruction of phylogenies; and it differs from eukaryotic biological evolution by foregoing a genotype vs phenotype distinction, allowing deliberate and biased change. Recognising these differences will improve our empirical tools and open new avenues for analyzing how linguistic, cultural, and biological evolution interacted with each other when language emerged in the hominin lineage. Importantly, our framework will help to cope with unprecedented scientific and ethical challenges that presently arise from how rapid cultural evolution impacts language, most urgently from interventional clinical tools for language disorders, potential epigenetic effects of technology on language, artificial intelligence and linguistic communicators, and global losses of linguistic diversity and identity. Beyond language, the distinctions made here allow identifying variation in other forms of biological and cultural evolution, developing new perspectives for empirical research.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38666404

RESUMO

Theoretical and empirical scholars of cultural evolution have traditionally studied social learning strategies, such as conformity, as adaptive strategies to obtain accurate information about the environment, whereas within social psychology there has been a greater focus upon the social consequences of such strategies. Although these two approaches are often used in concert when studying human social learning, we believe the potential social benefits of conformity, and of social learning more broadly, have been overlooked in studies of non-humans. We review evidence from studies of homophily, imitation, and rapid facial mimicry that suggests that behaving like others affords social benefits to non-human animals and that behaviour matching may be deployed strategically to increase affiliation. Furthermore, we review studies of conformity in dispersers, and suggest that forgoing personal information or preferences in favour of those of the new group during immigration may be a strategy to facilitate social integration. We therefore propose that the informational and social functions of conformity apply to humans and animals alike. We use this perspective to generate several interesting research questions to inspire work in this field. For example, under what conditions do animals use informational or social conformity and what role does uncertainty play in social learning in immigrant individuals?

4.
Behav Ecol Sociobiol ; 78(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235053

RESUMO

Abstract: In many group-living species, individuals are required to flexibly modify their communicative behaviour in response to current social challenges. To unravel whether sociality and communication systems co-evolve, research efforts have often targeted the links between social organisation and communicative repertoires. However, it is still unclear which social or interactional factors directly predict communicative complexity. To address this issue, we studied wild and zoo-housed immature orangutans of two species to assess the impact of the socio-ecological setting on the production of non-vocal signal repertoires. Specifically, we compared repertoire size, dyadic repertoire similarity, and number of social goals (i.e. observer's estimate of the signaller's intended interaction outcome) for communicative interactions with mothers versus other conspecifics, controlling for critical individual and environmental factors. In this small sample of immature orangutans, wild-captive contrasts were statistically significant only for other-directed repertoires, but not for mother-directed repertoires, and not for the number of social goals that immatures communicated towards. While the repertoires of individuals living in the same research setting were more similar than those living in contrasting settings, this difference was most pronounced for other-directed repertoires of the less socially tolerant orangutan species. These results suggest that the boosted interactional opportunities in captivity rather than mere differences in environmental affordances or communicative needs drive the wild-captive contrast in orangutan communicative repertoires. Overall, this fine-grained analysis of repertoires further underscores that not only a species' social organisation but also the targeted audience may have a profound impact on communicative behaviour. Significance statement: Navigating a dynamic social environment often requires flexible signal use. While it has repeatedly been shown that the social organisation and structure of species predict the complexity of their communication systems, the mechanisms underlying these relationships are largely unknown. Because targeted studies to assess this issue in great apes are difficult, we take an alternative approach here: we compare the same species living in the wild and in artificial habitats in captivity. This contrast allows a direct test of how repertoires respond to the relevant difference in socio-ecological conditions. Our results show that the diversity of interaction partners (i.e. social opportunities), but not the diversity of social goals (i.e. possible interaction outcomes) or the broader physical opportunities (i.e. safe ground use), predict the size and consistency of wild and captive signalling repertoires. Supplementary Information: The online version contains supplementary material available at 10.1007/s00265-023-03426-3.

5.
R Soc Open Sci ; 11(5): 231541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076802

RESUMO

Brain size variability in primates has been attributed to various domain-specific socio-ecological factors. A recently published large-scale study of short-term memory abilities in 41 primate species (ManyPrimates 2022 Anim. Behav. Cogn. 9, 428-516. (doi:10.26451/abc.09.04.06.2022)) did not find any correlations with 11 different proxies of external cognitive demands. Here, we found that the interspecific variation in test performance shows correlated evolution with total brain size, with the relationship becoming tighter as species with small sample sizes were successively removed, whereas it was not predicted by the often-used encephalization quotient. In a subsample, we also found that the sizes of brain regions thought to be involved in short-term memory did not predict performance better than overall brain size. The dependence on brain size suggests that domain-general cognitive processes underlie short-term memory as tested by ManyPrimates. These results support the emerging notion that comparative studies of brain size do not generally identify domain-specific cognitive adaptations but rather reveal varying selections on domain-general cognitive abilities. Finally, because attentional processes beyond short-term memory also affect test performance, we suggest that the delayed response test can be refined.

6.
BMC Ecol Evol ; 23(1): 77, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114918

RESUMO

Vertebrate brains show extensive variation in relative size. The expensive brain hypothesis argues that one important source of this variation is linked to a species' ability to generate the energy required to sustain the brain, especially during periods of unavoidable food scarcity. Here we ask whether this hypothesis, tested so far in endothermic vertebrates, also applies to ectotherms, where ambient temperature is an additional major aspect of energy balance. Phylogenetic comparative analyses of reptiles and amphibians support the hypothesis. First, relative brain size increases with higher body temperature in those species active during the day that can gain free energy by basking. Second, relative brain size is smaller among nocturnal species, which generally face less favorable energy budgets, especially when maintaining high body temperature. However, we do not find an effect of seasonal variation in ambient temperature or food on brain size, unlike in endotherms. We conclude that the factors affecting energy balance in ectotherms and endotherms are overlapping but not identical. We therefore discuss the idea that when body temperatures are seasonally very low, cognitive benefits may be thwarted and selection on larger brain size may be rare. Indeed, mammalian hibernators may show similarities to ectotherms.


Assuntos
Anfíbios , Répteis , Animais , Filogenia , Vertebrados , Mamíferos , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA