Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847798

RESUMO

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Luciferases/metabolismo , Luciferases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico , Amilases/metabolismo , Glutaminase/metabolismo
2.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35945166

RESUMO

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Assuntos
Proteínas de Escherichia coli , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Peixe-Zebra/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806397

RESUMO

A licensed Chlamydia trachomatis (Ct) vaccine is not yet available. Recombinant Chlamydia trachomatis major outer membrane protein (Ct-MOMP), the most abundant constituent of the chlamydial outer membrane complex, is considered the most attractive candidate for subunit-based vaccine formulations. Unfortunately, Ct-MOMP is difficult to express in its native structure in the E. coli outer membrane (OM). Here, by co-expression of the Bam complex, we improved the expression and localization of recombinant Ct-MOMP in the E. coli OM. Under these conditions, recombinant Ct-MOMP appeared to assemble into a ß-barrel conformation and express domains at the cell surface indicative of correct folding. The data indicate that limited availability of the Bam complex can be a bottleneck for the production of heterologous OM vaccine antigens, information that is also relevant for strategies aimed at producing recombinant OMV-based vaccines.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa/química , Vacinas Bacterianas , Escherichia coli/metabolismo , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
4.
Microb Cell Fact ; 20(1): 176, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488755

RESUMO

Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope. Problems occur in particular when the fused antigen attains a relatively complex structure in the periplasm, prior to its translocation across the outer membrane. The latter step requires the interaction with periplasmic chaperones and the BAM (ß-barrel assembly machinery) complex in the outer membrane. This complex catalyzes insertion and folding of ß-barrel outer membrane proteins, including the ß-barrel domain of autotransporters. Here, we investigated whether the availability of periplasmic chaperones or the BAM complex is a limiting factor for the surface localization of difficult-to-secrete chimeric autotransporter constructs. Indeed, we found that overproduction of in particular the BAM complex, increases surface display of difficult-to-secrete chimeras. Importantly, this beneficial effect appeared to be generic not only for a number of monomeric autotransporter fusions but also for fusions to trimeric autotransporters. Therefore, overproduction of BAM might be an attractive strategy to improve the production of recombinant autotransporter constructs.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Escherichia coli/genética , Transporte Proteico
5.
Mol Microbiol ; 112(1): 81-98, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30983025

RESUMO

Disarming pathogens by targeting virulence factors is a promising alternative to classic antibiotics. Many virulence factors in Gram-negative bacteria are secreted via the autotransporter (AT) pathway, also known as Type 5 secretion. These factors are secreted with the assistance of two membrane-based protein complexes: Sec and Bam. To identify inhibitors of the AT pathway, we used transcriptomics analysis to develop a fluorescence-based high-throughput assay that reports on the stress induced by the model AT hemoglobin protease (Hbp) when its secretion across the outer membrane is inhibited. Screening a library of 1600 fragments yielded the compound VUF15259 that provokes cell envelope stress and secretion inhibition of the ATs Hbp and Antigen-43. VUF15259 also impairs ß-barrel folding activity of various outer membrane proteins. Furthermore, we found that mutants that are compromised in outer membrane protein biogenesis are more susceptible to VUF15259. Finally, VUF15259 induces the release of vesicles that appear to assemble in short chains. Taken together, VUF15259 is the first reported compound that inhibits AT secretion and our data are mostly consistent with VUF15259 interfering with the Bam-complex as potential mode of action. The validation of the presented assay incites its use to screen larger compound libraries with drug-like compounds.


Assuntos
Sistemas de Secreção Tipo V/antagonistas & inibidores , Sistemas de Secreção Tipo V/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endopeptidases/metabolismo , Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Canais de Translocação SEC/antagonistas & inibidores , Canais de Translocação SEC/metabolismo , Fatores de Virulência/metabolismo
6.
J Biol Chem ; 290(19): 12237-46, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25809487

RESUMO

The Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σ(FoxI). In the absence of ferrioxamine, the activity of σ(FoxI) is inhibited by the transmembrane anti-sigma factor FoxR. Upon binding of ferrioxamine by the FoxA receptor, FoxR is processed by a complex proteolytic cascade leading to the release and activation of σ(FoxI). Interestingly, we have recently shown that FoxR undergoes self-cleavage between the periplasmic Gly-191 and Thr-192 residues independent of the perception of ferrioxamine. This autoproteolytic event, which is widespread among CSS anti-sigma factors, produces two distinct domains that interact and function together to transduce the presence of the signal. In this work, we provide evidence that the self-cleavage of FoxR is not an enzyme-dependent process but is induced by an N-O acyl rearrangement. Mutation analysis showed that the nucleophilic side chain of the Thr-192 residue at +1 of the cleavage site is required for an attack on the preceding Gly-191, after which the resulting ester bond is likely hydrolyzed. Because the cleavage site is well preserved and the hydrolysis of periplasmic CSS anti-sigma factors is widely observed, we hypothesize that cleavage via an N-O acyl rearrangement is a conserved feature of these proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/metabolismo , Receptores de Superfície Celular/metabolismo , Sideróforos/química , Fator sigma/metabolismo , Domínio Catalítico , Análise Mutacional de DNA , Desferroxamina/química , Escherichia coli/metabolismo , Compostos Férricos/química , Regulação Bacteriana da Expressão Gênica , Glicina/química , Hidrólise , Plasmídeos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Treonina/química
7.
Infect Immun ; 84(9): 2534-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324486

RESUMO

Two-partner secretion (TPS) systems export large TpsA proteins to the surface and extracellular milieu. In meningococci, three different TPS systems exist, and of these, TPS system 2 (TPS2) and TPS3 can be detected by the host's immune system. We evaluated the distribution of TPS systems among clinical isolates from two prospective cohort studies comprising 373 patients with meningococcal meningitis. TPS system 1 was present in 91% of isolates, and system 2 and/or 3 was present in 67%. The TPS system distribution was related to clonal complexes. Infection with strains with TPS2 and/or TPS3 resulted in less severe disease and better outcomes than infection with strains without these systems. Using whole-blood stimulation experiments, we found no differences in the host cytokine response between patients infected with TPS system 2 and 3 knockout strains and patients infected with a wild-type strain. In conclusion, meningococcal TPS system 2 and/or 3 is associated with disease severity and outcome in patients with meningitis.


Assuntos
Sistemas de Secreção Bacterianos/metabolismo , Meningite Meningocócica/microbiologia , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Meningite Meningocócica/metabolismo , Estudos Prospectivos
8.
J Biol Chem ; 289(28): 19799-809, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872418

RESUMO

The two-partner secretion (TPS) systems of Gram-negative bacteria secrete large TpsA exoproteins by a dedicated TpsB transporter in the outer membrane. TpsBs contain an N-terminal module located in the periplasm that includes two polypeptide transport-associated (POTRA) domains. These are thought to initiate secretion of a TpsA by binding its N-terminal secretion signal, called the TPS domain. Neisseria meningitidis encodes up to five TpsA proteins that are secreted via only two TpsB transporters: TpsB1 and TpsB2. Of these two, the TpsB2 recognizes the TPS domains of all TpsAs, despite their sequence diversity. By contrast, the TpsB1 shows a limited recognition of a TPS domain that is shared by two TpsAs. The difference in substrate specificity of the TpsBs enabled us to investigate the role of the POTRA domains in the selection of TPS domains. We tested secretion of TPS domains or full-length TpsAs by TpsB mutants with deleted, duplicated, and exchanged POTRA domains. Exchanging the two POTRA domains of a TpsB resulted in a switch in specificity. Furthermore, exchanging a single POTRA domain showed that each of the two domains contributed to the cargo selection. Remarkably, the order of the POTRA domains could be reversed without affecting substrate selection, but this aberrant order did result in an alternatively processed secretion product. Our results suggest that secretion of a TpsA is initiated by engaging both POTRA domains of a TpsB transporter and that these select the cognate TpsAs for secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Proteínas de Transporte/metabolismo , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Neisseria meningitidis/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
9.
Biochim Biophys Acta ; 1843(8): 1592-611, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24269841

RESUMO

The two membranes of Gram-negative bacteria contain protein machines that have a general function in their assembly. To interact with the extra-cellular milieu, Gram-negatives target proteins to their cell surface and beyond. Many specialized secretion systems have evolved with dedicated translocation machines that either span the entire cell envelope or localize to the outer membrane. The latter act in concert with inner-membrane transport systems (i.e. Sec or Tat). Secretion via the Type V secretion system follows a two-step mechanism that appears relatively simple. Proteins secreted via this pathway are important for the Gram-negative life-style, either as virulence factors for pathogens or by contributing to the survival of non-invasive environmental species. Furthermore, this system appears well suited for the secretion of biotechnologically relevant proteins. In this review we focus on the biogenesis and application of two Type V subtypes, the autotransporters and two-partner secretion (TPS) systems. For translocation across the outer membrane the autotransporters require the assistance of the Bam complex that also plays a generic role in the assembly of outer membrane proteins. The TPS systems do use a dedicated translocator, but this protein shows resemblance to BamA, the major component of the Bam complex. Interestingly, both the mechanistic and more applied studies on these systems have provided a better understanding of the secretion mechanism and the biogenesis of outer membrane proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/genética , Transporte Proteico/genética , Proteínas da Membrana Bacteriana Externa/química , Biotecnologia , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína
10.
Microbiology (Reading) ; 160(Pt 11): 2421-2431, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25161279

RESUMO

As with all classical monomeric autotransporters, IgA protease of Neisseria meningitidis is a modular protein consisting of an N-terminal signal sequence, a passenger domain and a C-terminal translocator domain (TD) that assists in the secretion of the passenger domain across the outer membrane. The passenger of IgA protease consists of three separate domains: the protease domain, the γ-peptide and the α-peptide that contains nuclear localization signals (NLSs). The protease domain is released into the extracellular milieu either via autocatalytic processing or via cleavage by another autotransporter, NalP, expression of which is phase-variable. NalP-mediated cleavage results in the release of a passenger that includes the α- and γ-peptides. Here, we studied the fate of the α-peptide when NalP was not expressed and observed strain-dependent differences. In meningococcal strains where the α-peptide contained a single NLS, the α-peptide remained covalently attached to the TD and was detected at the cell surface. In other strains, the α-peptide contained four NLSs and was separated from the TD by an IgA protease autoproteolytic cleavage site. In many of those cases, the α-peptide was found non-covalently associated with the cells as a separate polypeptide. The cell surface association of the α-peptides may be relevant physiologically. We report a novel function for the α-peptide, i.e. the binding of heparin - an immune-modulatory molecule that in the host is found in the extracellular matrix and connected to cell surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Neisseria meningitidis/enzimologia , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Heparina/metabolismo , Humanos , Meningite Meningocócica/metabolismo , Meningite Meningocócica/microbiologia , Dados de Sequência Molecular , Neisseria meningitidis/química , Neisseria meningitidis/genética , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Serina Endopeptidases/química , Serina Endopeptidases/genética
11.
Appl Environ Microbiol ; 80(18): 5854-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038093

RESUMO

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


Assuntos
Antígenos de Bactérias/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretórias/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Transporte Proteico , Salmonella typhimurium/genética
12.
Methods Mol Biol ; 2778: 367-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478289

RESUMO

Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of ß-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo
13.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38684467

RESUMO

The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Descoberta de Drogas/métodos , Embrião não Mamífero/efeitos dos fármacos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Anti-Infecciosos/farmacologia
14.
Hum Vaccin Immunother ; 20(1): 2330768, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38517203

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.


Assuntos
Infecções por Chlamydia , Vacinas , Feminino , Animais , Camundongos , Chlamydia trachomatis , Linfócitos T CD8-Positivos , Antígenos de Bactérias , Salmonella , Imunidade , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa
15.
J Bacteriol ; 195(4): 788-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222722

RESUMO

The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Neisseria meningitidis/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Clonagem Molecular , Simulação por Computador , Deleção de Genes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neisseria meningitidis/genética , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie
16.
BMC Genomics ; 14: 622, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24034852

RESUMO

BACKGROUND: Two-partner secretion systems in Gram-negative bacteria consist of an outer membrane protein TpsB that mediates the secretion of a cognate TpsA protein into the extracellular milieu. TpsA proteins have diverse, often virulence-related functions, and some of them inhibit the growth of related bacteria. In Neisseria meningitidis, several functions have been attributed to the TpsA proteins. Downstream of the tpsB and tpsA genes, several shorter tpsA-related gene cassettes, called tpsC, are located interspersed with intervening open-reading frames (IORFs). It has been suggested that the tpsC cassettes may recombine with the tpsA gene as a mechanism of antigenic variation. Here, we investigated (i) whether TpsA of N. meningitidis also has growth-inhibitory properties, (ii) whether tpsC cassettes recombine with the tpsA gene, and (iii) what the consequences of such recombination events might be. RESULTS: We demonstrate that meningococcal TpsA has growth-inhibitory properties and that the IORF located immediately downstream of tpsA confers immunity to the producing strain. Although bioinformatics analysis suggests that recombination between tpsC cassettes and tpsA occurs, detailed analysis of the tpsA gene in a large collection of disease isolates of three clonal complexes revealed that the frequency is very low and cannot be a mechanism of antigenic variation. However, recombination affected growth inhibition. In vitro experiments revealed that recombination can be mediated through acquirement of tpsC cassettes from the environment and it identified the regions involved in the recombination. CONCLUSIONS: Meningococcal TpsA has growth-inhibitory properties. Recombination between tpsA and tpsC cassettes occurs in vivo but is rare and has consequences for growth inhibition. A recombination model is proposed and we propose that the main goal of recombination is the collection of new IORFs for protection against a variety of TpsA proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/genética , Recombinação Genética , DNA Bacteriano/genética , Fases de Leitura Aberta , Análise de Sequência de DNA
17.
Antimicrob Agents Chemother ; 57(8): 3941-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733461

RESUMO

A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CR E. coli lacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CR E. coli possessed bla(CTX-M-15) and bla(OXA-1). The CR E. coli strain additionally harbored bla(CMY-2) and demonstrated a >15-fold increase in ß-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation either in vitro or in vivo with meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into various E. coli strains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated ß-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the ß-lactamase. This study, therefore, provides evidence that the mechanism of "trapping" by CMY-2 ß-lactamase plays a role in carbapenem resistance.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli/efeitos dos fármacos , Plasmídeos/metabolismo , Tienamicinas/uso terapêutico , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa/genética , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Hidrólise , Meropeném , Testes de Sensibilidade Microbiana , Periplasma/efeitos dos fármacos , Plasmídeos/genética , Ligação Proteica , Tienamicinas/farmacologia , Adulto Jovem , beta-Lactamases/genética
18.
Microbiology (Reading) ; 159(Pt 2): 286-295, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23258267

RESUMO

Autotransporters of Gram-negative bacteria consist of an N-terminal signal sequence, a C-terminal translocator domain and the secreted passenger domain in between. The autotransporter NalP of Neisseria meningitidis includes a protease domain that facilitates the release of several immunogenic proteins from the cell surface into the extracellular milieu. Rather exceptionally among autotransporters, NalP is a lipoprotein. We investigated the role of lipidation in the biogenesis and function of the protein. To this end, the N-terminal cysteine, which is lipidated in the wild-type protein, was substituted by alanine. Like the wild-type protein, the mutant protein was secreted into the medium, demonstrating that lipidation is not required for biogenesis of the protein. However, the non-lipidated NalP variant had a drastically reduced capacity to cleave its substrate proteins from the cell surface, suggesting that the lipid moiety is important for function. Kinetic experiments demonstrated that the autocatalytic processing of the non-lipidated protein at the cell surface was much faster than that of the wild-type protein. Thus, the lipid moiety delays the release of NalP from the cell surface, thereby allowing it to release other surface-exposed proteins into the milieu.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Neisseria meningitidis/metabolismo , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/metabolismo , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Cisteína/genética , Cisteína/metabolismo , Cinética , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Serina Endopeptidases/genética
19.
Mol Membr Biol ; 28(3): 158-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21314477

RESUMO

Autotransporters produced by Gram-negative bacteria consist of an N-terminal signal sequence, a C-terminal translocator domain (TD), and a passenger domain in between. The TD facilitates the secretion of the passenger across the outer membrane. It generally consists of a channel-forming ß-barrel that can be plugged by an α-helix that is formed by a polypeptide fragment immediately N-terminal to the barrel domain in the sequence. In this work, we characterized the TD of the hemoglobin protease Hbp of Escherichia coli by comparing its properties with the TDs of NalP of Neisseria meningitidis and IgA protease of Neisseria gonorrhoeae. All TDs were produced in inclusion bodies and folded in vitro. In the case of the TD of Hbp, this procedure resulted in autocatalytic intramolecular processing, which mimicked the in vivo processing. Liposome-swelling assays and planar lipid bilayer experiments revealed that the pore of the Hbp TD was largely obstructed. In contrast, an Hbp TD variant that lacked only one amino-acid residue from the N terminus showed the opening and closing of a channel comparable to what was reported for the TD of NalP. Additionally, the naturally processed helix contributed to the stability of the TD, as shown by chemical denaturation monitored by tryptophan fluorescence. Overall these results show that Hbp is processed by an autocatalytic intramolecular mechanism resulting in the stable docking of the α-helix in the barrel. In addition, we could show that the α-helix contributes to the stability of TDs.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Escherichia coli/enzimologia , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Lipossomos/química , Neisseria meningitidis/enzimologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Serina Endopeptidases/metabolismo , Espectrometria de Fluorescência
20.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203875

RESUMO

The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA