Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 31(6): 1337-47, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24977374

RESUMO

Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/instrumentação , Lentes , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
2.
J Opt Soc Am A Opt Image Sci Vis ; 29(11): 2428-38, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201806

RESUMO

Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N+1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment.


Assuntos
Modelos Teóricos , Fenômenos Ópticos , Algoritmos , Análise dos Mínimos Quadrados , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA