Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(38): 19116-19125, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31427514

RESUMO

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Genoma Bacteriano , Proteoma/análise , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ciclo do Carbono , Movimento Celular , Quimiotaxia , Citocromos/metabolismo , Deltaproteobacteria/classificação , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , Homologia de Sequência , Sulfetos/metabolismo
2.
J Environ Manage ; 270: 110818, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32507739

RESUMO

Conventional wastewater treatment plants remove phosphorus, which is captured in sewage sludge. Increasing attention is paid to suitable process pathways that allow recovery and recycling of phosphorus. One of the processes under investigation is acid leaching and recovery of phosphorus, but this requires considerable chemical additives, which could be avoided by stimulating acidification via microbiological processes. This study investigated phosphorus leaching from sewage sludge by biogenic sulfuric acid, using Acidithiobacillus thiooxidans. Sulfur supplementation and solid to liquid ratio were varied to examine how these factors affected phosphorus leaching yield. Chemical leaching by sulfuric acid from sewage sludge and thermally-treated sludge was conducted to compare with bioleaching from sewage sludge. Sewage sludge samples were collected from wastewater treatment plants in Ghent, Belgium, and Delft, The Netherlands. Both bioleaching and chemical leaching were conducted at laboratory scale using shake flask technique, and highest phosphorus leaching yield and time was determined using one-way ANOVA statistical tests. Biogenic sulfuric acid produced by A. thiooxidans extracted phosphorus from both sludge samples. The highest phosphorus leaching yield observed was 48 ± 0% for 17 days from Ghent samples and 57 ± 4% for 27 days from Delft samples with 5.0% (w/v) sulfur supplementation and 1.0% (w/v) solid to liquid ratio. Chemical leaching took shorter than bioleaching, but the leaching yield was lower, i.e. 41 ± 1% for 4 h from Ghent samples, 44 ± 1% for 1 h from Delft samples, 48 ± 1% for 1 h from thermally-treated Ghent samples and 51 ± 2% for 4 h from thermally-treated Delft samples. During phosphorus bioleaching, pH increase was observed during the early stage which hampered the activity of A. thiooxidans and therefore increased phosphorus leaching time. This study suggests that creating conditions for A. thiooxidans to overcome acid neutralizing capacity of sewage sludge is needed to extract phosphorus effectively.


Assuntos
Acidithiobacillus , Metais Pesados , Acidithiobacillus thiooxidans , Bélgica , Concentração de Íons de Hidrogênio , Países Baixos , Fósforo , Esgotos , Águas Residuárias
3.
J Environ Manage ; 250: 109516, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31513998

RESUMO

A better understanding of the effects of different urban and recreational surfaces on the die-off of water-borne pathogens that can cause infections after urban floods if released from surcharged combined sewers and other sources of fecal contamination is needed. The die-off of fecal indicator Escherichia coli was studied under controlled exposure to simulated sunlight on a range of different surfaces found in urban environments: gravel, sand, asphalt, pavement blocks, concrete, playground rubber tiles and grass, using glass as control. The surfaces were inoculated with artificial flooding water containing 105 colony forming units (CFU) of E. coli per mL and sampled periodically using the sterile cotton swab technique, after lowering the water level. The results show that dark inactivation was not statistically significant for any surface, suggesting that chemical composition and pH (varying between 6.5 ±â€¯0.8 and 9.2 ±â€¯0.4) did not affect the die-off rates. The highest light-induced die-off rates for E. coli after the floodwater recession, observed on rubber (>3.46 h-1) and asphalt (2.7 h-1), were attributed to temperature stress and loss of surface moisture.


Assuntos
Escherichia coli , Inundações , Fezes , Água Doce , Microbiologia da Água
4.
Int J Environ Health Res ; 26(5-6): 536-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27666295

RESUMO

Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.


Assuntos
Desinfetantes/farmacologia , Desinfecção/normas , Banheiros , Raios Ultravioleta , Escherichia coli/efeitos da radiação , Filipinas
5.
Microbiome ; 12(1): 164, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242535

RESUMO

BACKGROUND: Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS: To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS: This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.


Assuntos
Biofilmes , Metagenômica , Rios , Águas Residuárias , beta-Lactamases , Biofilmes/efeitos dos fármacos , Águas Residuárias/microbiologia , beta-Lactamases/genética , Rios/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Planctomycetales/genética , Planctomycetales/efeitos dos fármacos , Metagenoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Environ Sci Pollut Res Int ; 31(40): 52948-52962, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164561

RESUMO

In Fiji, 90% of the population has access to basic sanitation; however, there are still persistent health risks from endemic faecal-oral diseases such as typhoid fever. There is a need to assess the contribution of existing sanitation facilities in the faecal pathogen transmission pathway. This study was conducted as part of a larger planetary health study across 29 rural communities within five river catchments. This specific research aimed to characterise latrine front-ends, both infrastructure and usage behaviour, and to assess the faecal contamination levels on various frequently contacted latrine surfaces in rural Fiji. A sanitation survey, along with observation and latrine swab sampling, was conducted in households over three phases: baseline (n = 311) (Aug-Dec 2019), endline (n = 262) (Jun-Sep 2022) and an in-depth front-end study (n = 12) (Oct-Nov 2022). Of 311 households, almost all had pedestal-type latrines, predominately cistern-flush (83%), followed by pour-flush (13%), and then hole-type (pit) latrines (4%). Washable latrine floors had significantly higher E. coli densities (6.7 × 102 CFU/25 cm2) compared to non-washable floors (1.3 × 102 CFU/25 cm2) (p = 0.05), despite washable floors indicating improved latrines. The in-depth front-end analysis found that moist latrine surfaces had significantly elevated E. coli densities (1.2 × 103 CFU/25 cm2) compared to the dry ones (14.3 CFU/25 cm2) (p < 0.001), highlighting the importance of maintaining dry latrine surfaces. Latrine floors and mid-walls were the most frequently contaminated surfaces, emphasising the need to clean and disinfect these surfaces. Only 46% of the households reported always using soap for handwashing after defecation, exacerbating the risk of transmitting faecal pathogens. This study highlights that latrine cleanliness and hygiene are as crucial as latrine infrastructures for the effective disruption of faecal pathogens transmission during latrine use.


Assuntos
Escherichia coli , Fezes , População Rural , Saneamento , Banheiros , Fiji , Fezes/microbiologia , Humanos , Características da Família
7.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22568606

RESUMO

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Genoma Bacteriano , Metagenoma , Ciclo do Nitrogênio , Planctomycetales/genética , Planctomycetales/metabolismo , Organismos Aquáticos/classificação , Nitrito Redutases/metabolismo , Oceanos e Mares , Oxirredução , Planctomycetales/classificação , Compostos de Amônio Quaternário/metabolismo , RNA Ribossômico 16S/genética , Microbiologia da Água
8.
Bioresour Technol ; 367: 128298, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368484

RESUMO

The bioconversion of food waste to renewable products has an important role in alleviating the environmental burden of food wastage. This study evaluates the effect of solids retention time (1.5, 4, and 7 days) and lipid content (up to 30 % DS) on the solid's destruction efficiency and VFA yield from food waste fermentation. Although SRT below 4 days and lipid content beyond 20 % reduced the solids destruction efficiency (SRT -12 %, lipids -13 %), the VFA yield improved (SRT 0.36 to 0.48 g CODVFA/TCODFED; lipids 0.17 to 0.39 g CODVFA/TCODFED). This appeared to be a mechanism of improved acidification which doubled to 0.77 gCODVFA/g SCOD at 1.5-day SRT. The introduction of easily degradable organics in waste oils and methanogen inhibition by LCFAs were likely causes of process instability when lipids >20 %. Further research is needed considering the COD fractionation of the feed to maximize recoverable products on a commercial scale.


Assuntos
Alimentos , Eliminação de Resíduos , Esgotos , Reatores Biológicos , Ácidos Graxos Voláteis , Anaerobiose
9.
Nature ; 440(7085): 790-4, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16598256

RESUMO

Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Genoma Bacteriano , Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Bactérias/classificação , Reatores Biológicos , Evolução Molecular , Ácidos Graxos/biossíntese , Genes Bacterianos/genética , Hidrazinas/metabolismo , Hidrolases/metabolismo , Óperon/genética , Oxirredutases/metabolismo , Filogenia , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 106(12): 4752-7, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19255441

RESUMO

The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineralization in these waters. Without detectable denitrification, it is unclear how NH(4)(+) is remineralized from organic matter and sustains anammox or how secondary NO(2)(-) maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO(2)(-) from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimilatory nitrate reduction to ammonium was detected in an open-ocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH(4)(+) requirement for anammox. The remaining NH(4)(+) came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO(3)(-) accounted for only approximately 50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.


Assuntos
Nitrogênio/metabolismo , Oxigênio/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução , Peru , Compostos de Amônio Quaternário/metabolismo
11.
Water Res ; 195: 116992, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714012

RESUMO

The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.


Assuntos
Esgotos , Purificação da Água , Aerobiose , Reatores Biológicos , Escherichia coli , Eliminação de Resíduos Líquidos
12.
Appl Environ Microbiol ; 76(5): 1596-603, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20048066

RESUMO

Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed "ladderane lipids." In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C(20) [5]-ladderane fatty acids compared with the amount of C(18) [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C(18) [5]-ladderane fatty acids compared with the amount of C(20) [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R(2) = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C(18) and C(20) [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C(18) [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12 degrees C and 20 degrees C. Novel shorter (C(16)) and longer (C(22) to C(24)) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.


Assuntos
Bactérias Anaeróbias/metabolismo , Bactérias Anaeróbias/efeitos da radiação , Metabolismo dos Lipídeos , Temperatura , Amônia/metabolismo , Oxirredução
13.
Artigo em Inglês | MEDLINE | ID: mdl-32218157

RESUMO

Accurate assessments of drinking water quality, household hygenic practices, and the mindset of the consumers are critical for developing effective water intervention strategies. This paper presents a microbial quality assessment of 512 samples from household water storage containers and 167 samples from points of collection (POC) in remote rural communities in the hilly area of western Nepal. We found that 81% of the stored drinking water samples (mean log10 of all samples = 1.16 colony-forming units (CFU)/100 mL, standard deviation (SD) = 0.84) and 68% of the POC samples (mean log10 of all samples = 0.57 CFU/100 mL, SD = 0.86) had detectable E. coli. The quality of stored water was significantly correlated with the quality at the POC, with the majority (63%) of paired samples showing a deterioration in quality post-collection. Locally applied household water treatment (HWT) methods did not effectively improve microbial water quality. Among all household sanitary inspection questions, only the presence of livestock near the water storage container was significantly correlated with its microbial contamination. Households' perceptions of their drinking water quality were mostly influenced by the water's visual appearance, and these perceptions in general motivated their use of HWT. Improving water quality within the distribution network and promoting safer water handling practices are proposed to reduce the health risk due to consumption of contaminated water in this setting.


Assuntos
Água Potável , Purificação da Água , Qualidade da Água , Escherichia coli , Humanos , Nepal , População Rural , Microbiologia da Água , Abastecimento de Água
14.
Sci Total Environ ; 704: 135456, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837866

RESUMO

The high frequency and intensity of urban floods caused by climate change, urbanisation and infrastructure failures increase public health risks when the flood water contaminated from combined sewer overflows (CSOs) or other sources of faecal contamination remains on urban surfaces. This study contributes to a better understanding of the effects of urban and recreational surfaces on the occurrence of waterborne pathogens. The inactivation of selected indicator organisms was studied under controlled exposure to artificial sunlight for 6 h followed by 18 h in dark conditions. Concrete, asphalt, pavement blocks and glass as control were inoculated with artificial floodwater containing, as indicator organisms, Escherichia coli bacteria, which are common faecal indicator bacteria (FIB) for water quality assessment, Bacillus subtilis spores chosen as surrogates for Cryptosporidium parvum oocysts and Giardia cysts, and bacteriophages MS2 as indicators for viral contamination. On practically all the surfaces in this study, E. coli had the highest inactivation under light conditions followed by MS2 and B. subtilis, except asphalt where MS2 was inactivated faster. The highest inactivation under light conditions was seen with E. coli on a concrete surface (pH 9.6) with an inactivation rate of 1.85 h-1. However, the pH of the surfaces (varying between 7.0 and 9.6) did not have any influence on inactivation rates under dark conditions. MS2 bacteriophage had the highest inactivation under light conditions on asphalt with a rate of 1.29 h-1. No die-off of B. subtilis spores was observed on any of the surfaces during the experiment, neither in light nor in dark conditions. This study underpins the need to use different indicator organisms to test their inactivation after flooding. It also suggests that given the sunlight conditions, concentration of indicator organisms and type of surface, the fate of waterborne pathogens after a flood could be estimated.


Assuntos
Monitoramento Ambiental/métodos , Inundações , Microbiologia da Água , Bactérias , Cidades , Criptosporidiose , Cryptosporidium , Cryptosporidium parvum , Levivirus , Oocistos
15.
Environ Microbiol ; 10(11): 3120-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18462401

RESUMO

Microbiological investigation of anaerobic ammonium oxidizing (anammox) bacteria has until now been restricted to wastewater species. The present study describes the enrichment and characterization of two marine Scalindua species, the anammox genus that dominates almost all natural habitats investigated so far. The species were enriched from a marine sediment in the Gullmar Fjord (Sweden) using a medium based on Red Sea salt. Anammox cells comprised about 90% of the enrichment culture after 10 months. The enriched Scalindua bacteria displayed all typical features known for anammox bacteria, including turnover of hydrazine, the presence of ladderane lipids, and a compartmentalized cellular ultrastructure. The Scalindua species also showed a nitrate-dependent use of formate, acetate and propionate, and performed a formate-dependent reduction of nitrate, Fe(III) and Mn(IV). This versatile metabolism may be the basis for the global distribution and substantial contribution of the marine Scalindua anammox bacteria to the nitrogen loss from oxygen-limited marine ecosystems.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Água do Mar/microbiologia , Ácido Acético/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Formiatos/metabolismo , Genes de RNAr , Hidrazinas/metabolismo , Ferro/metabolismo , Lipídeos/análise , Manganês/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução , Filogenia , Propionatos/metabolismo , Compostos de Amônio Quaternário/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Suécia
16.
FEMS Microbiol Ecol ; 63(1): 46-55, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18081590

RESUMO

Anaerobic ammonium oxidizing (anammox) bacteria are detected in many natural ecosystems and wastewater treatment plants worldwide. This study describes the enrichment of anammox bacteria in the presence of acetate. The results obtained extend the concept that the anammox bacteria can be enriched to high densities in the presence of substrates for heterotrophic growth. Batch experiments showed that among the tested biomass, the biomass from the Candidatus 'Brocadia fulgida' enrichment culture oxidizes acetate at the highest rate. Continuous cultivation experiments showed that in the presence of acetate, ammonium, nitrite and nitrate, Candidatus 'Brocadia fulgida' out-competed other anammox bacteria. The results indicated that Candidatus 'Brocadia fulgida' did not incorporate acetate directly into their biomass. Candidatus 'Brocadia fulgida' exhibited the common characteristics of anammox bacteria: the presence of an anammoxosome and ladderane lipids and the production of hydrazine in the presence of hydroxylamine. Interestingly, the biofilm aggregates of this species showed strong autofluorescence. It is the only known anammox species exhibiting this feature. The autofluorescent extracellular polymeric substance had two excitation (352 and 442 nm) and two emission (464 and 521 nm) maxima.


Assuntos
Bactérias Anaeróbias/classificação , Biofilmes/crescimento & desenvolvimento , Fluorescência , Compostos de Amônio Quaternário/metabolismo , Acetatos/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/fisiologia , Biomassa , Crescimento Quimioautotrófico , Hidrazinas/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Dados de Sequência Molecular , Oxirredução , Filogenia , Polímeros , RNA Ribossômico 16S , Análise de Sequência de DNA
17.
Syst Appl Microbiol ; 31(2): 114-25, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18289820

RESUMO

Oxidation of high-strength ammonium wastewater can lead to exceptionally high nitrite concentrations; therefore, the effect of high nitrite concentration (> 400 mM) was studied using an ammonium-oxidizing enrichment culture in a batch reactor. Ammonium was fed to the reactor in portions of 40-150 mM until ammonium oxidation rates decreased and finally stopped. Activity was restored by replacing half of the medium, while biomass was retained by a membrane. The ammonium-oxidizing population obtained was able to oxidize ammonium at nitrite concentrations of up to 500 mM. The maximum specific oxidation activity of the culture in batch test was about 0.040 mmol O(2)g(-1)proteinmin(-1) and the K(s) value was 1.5 mM ammonium. In these tests, half of the maximum oxidation activity was still present at a concentration of 600 mM nitrite and approximately 10% residual activity could still be measured at 1200 mM nitrite (pH 7.4), or as a free nitrous acid (FNA) concentration of 6.6 mg l(-1). Additional experiments showed that the inhibition was caused by nitrite and not by the high sodium chloride concentration of the medium. The added ammonium was mainly converted into nitrite and no nitrite oxidation was observed. In addition, gaseous nitrogen compounds were detected and mass balance calculations revealed a nitrogen loss of approximately 20% using this system. Phylogenetic analyses of 16S rRNA and ammonium monooxygenase (amoA) genes of the obtained enrichment culture showed that ammonium-oxidizing bacteria of the Nitrosomonas europaea/Nitrosococcus mobilis cluster dominated the two clone libraries. Approximately 25% of the 16S rRNA clones showed a similarity of 92% to Deinococcus-like organisms. Specific fluorescence in situ hybridization (FISH) probes confirmed that these microbes comprised 10-20% of the microbial community in the enrichment. The Deinococcus-like organisms were located around the Nitrosomonas clusters, but their role in the community is currently unresolved.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/classificação , Nitritos/metabolismo , Nitritos/farmacologia , Compostos de Amônio Quaternário/metabolismo , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biomassa , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
18.
Sci Total Environ ; 634: 868-874, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653430

RESUMO

Removal of nitrogen from wastewater without using electricity consuming aerators was previously observed in photo-bioreactors with a mixed algal-bacterial biomass. Algammox is the particular process based on algae, ammonium oxidizing organisms and anammox bacteria. In this research the activity of anammox bacteria in such an oxygen-producing environment was tested, as well as the effect of short-duration increase in dissolved oxygen (DO) to values potentially inhibiting anammox activity. Sequencing batch photo-bioreactors were fed with settled domestic wastewater enriched with ammonium (200mgNH4+-N/L) and exposed to light within the photosynthetic active range with intensity of about 500µmol/m2·s. Each cycle consisted of 12h illumination and 12h darkness. A well-settling biomass (10days solids retention time) developed that carried out nitritation, nitrification and anammox. Ammonium removal rate during the light period was 4.5mgN-NH4+/L·h, equal to 858mgN-NH4+/m2·h or 477mgN-NH4+/(mol photons). When the reactors were aerated for 3h to temporarily increase the DO, anammox was inhibited at bulk DO values larger than 0.4-1.0mg/L. For almost oxygen saturated conditions, recovery time was about 9days. Algammox photo-bioreactors are therefore able to overcome short periods of oxygen stress, provided they occur only occasionally.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29649111

RESUMO

To assess the suitability of water sources for drinking purposes, samples were taken from groundwater sources (boreholes and hand-dug wells) used for drinking water in the Dodowa area of Ghana. The samples were analyzed for the presence of fecal indicator bacteria (Escherichia coli) and viruses (Adenovirus and Rotavirus), using membrane filtration with plating and glass wool filtration with quantitative polymerase chain reaction (PCR), respectively. In addition, sanitary inspection of surroundings of the sources was conducted to identify their vulnerability to pollution. The presence of viruses was also assessed in water samples from the Dodowa River. More than 70% of the hand-dug wells were sited within 10 m of nearby sources of contamination. All sources contained E. coli bacteria, and their numbers in samples of water between dug wells and boreholes showed no significant difference (p = 0.48). Quantitative PCR results for Adenovirus indicated 27% and 55% were positive for the boreholes and hand-dug wells, respectively. Samples from all boreholes tested negative for the presence of Rotavirus while 27% of the dug wells were positive for Rotavirus. PCR tests of 20% of groundwater samples were inhibited. Based on these results we concluded that there is systemic microbial and fecal contamination of groundwater in the area. On-site sanitation facilities, e.g., pit latrines and unlined wastewater drains, are likely the most common sources of fecal contamination of groundwater in the area. Water abstracted from groundwater sources needs to be treated before use for consumption purposes. In addition, efforts should be made to delineate protected areas around groundwater abstraction points to minimize contamination from point sources of pollution.


Assuntos
Água Subterrânea/microbiologia , Poços de Água , Adenoviridae/isolamento & purificação , Monitoramento Ambiental , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Gana , Humanos , Rios , Rotavirus/isolamento & purificação , Abastecimento de Água
20.
Syst Appl Microbiol ; 30(1): 39-49, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16644170

RESUMO

The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Propionatos/metabolismo , Compostos de Amônio Quaternário/metabolismo , Esgotos/microbiologia , Bactérias Anaeróbias/fisiologia , Bactérias Anaeróbias/ultraestrutura , Reatores Biológicos , Meios de Cultura , DNA Ribossômico/genética , Ecossistema , Hibridização in Situ Fluorescente , Lipídeos/análise , Viabilidade Microbiana , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA