RESUMO
High-frequency electrical stimulation (HFS) of C fiber nociceptors induces long-term potentiation (LTP) at the first spinal synapse. This spinal LTP is believed to play a role in the amplification of pain. However, the effects of HFS are probably not restricted to the spinal cord. A recent study showed that HFS increases cortical responses to noxious stimuli in a porcine model. Are these increased cortical responses a correlate of spinal LTP and do we observe the same in humans?
RESUMO
BACKGROUND: Conflicting results exist between somatosensory profiles of patients with temporomandibular myalgia (TMDm). The objective of this review was to examine whether adults with TMDm show altered responses to dynamic quantitative sensory tests compared with healthy controls. METHODS: We searched five electronic databases for studies, excluding those without suitable controls or where TMDm was associated with confounding non-musculoskeletal disorders. Risk of bias was assessed with the SIGN case-control study checklist. Findings were structured around dynamic quantitative sensory tests and their localization. Where possible, we performed meta-analysis with a random inverse variance model to compare patients with TMDm and healthy controls. Statistical heterogeneity was estimated with Chi² test and inconsistency index, I². RESULTS: We extracted data from 23 studies comprising 1284 adults with chronic TMDm and 2791 healthy controls. Risk of bias was assessed as high for 20 studies. Mechanical temporal summation, the most studied phenomenon (14 studies), is increased in the upper limb of patients with TMDm (SMD = 0.43; 95% CI: .11 to .75; p = .009) but not in the jaw area (p = .09) or in the cervical area (p = .29). Very little evidence for altered thermal temporal summation (five studies), conditioned pain modulation (seven studies), exercise-induced hypoalgesia (two studies), placebo analgesia (two studies), stress-induced hypoalgesia (one study) and offset analgesia (one study) was found. DISCUSSION: A major limitation of this review was the risk of bias of included studies. Future studies would benefit from following methodological guidelines and consideration of confounding factors.
Assuntos
Analgesia , Mialgia , Adulto , Estudos de Casos e Controles , Humanos , Estudos Observacionais como Assunto , Manejo da DorRESUMO
Animal studies have shown that high-frequency electrical stimulation (HFS) of peripheral C-fiber nociceptors induces both homosynaptic and heterosynaptic long-term potentiation (LTP) within spinal nociceptive pathways. In humans, when HFS is applied onto the skin to activate nociceptors, single electrical stimuli are perceived more intense at the HFS site compared with a control site, a finding that was interpreted as a perceptual correlate of homosynaptic LTP. The present study aimed to investigate if after HFS the pain elicited by electrical stimuli delivered at the skin next to the HFS site is perceived as more intense compared with the pain at a control site (contralateral arm). To test this, HFS was applied to one of the two ventral forearms of 24 healthy participants. Before and after HFS, single electrical stimuli were delivered through the HFS electrode, through an identical electrode next to the HFS electrode and an identical electrode at the contralateral arm. After HFS, the pain elicited by the single electrical stimuli was reduced at all three sites, with the largest reduction at the HFS site. Nevertheless, electrical stimuli delivered to the skin next to the HFS site were perceived as more intense than control stimuli. This result indicates that higher pain ratings to electrical stimuli after HFS at the HFS site cannot solely be interpreted as a perceptual correlate of homosynaptic changes. Furthermore, we show for the first time, in humans, that HFS can reduce pain elicited by single electrical stimuli delivered through the same electrode.NEW & NOTEWORTHY High-frequency electrical stimulation (HFS) of cutaneous nociceptors can reduce pain perception to single electrical stimuli delivered through the same electrode. Moreover, single electrical stimuli delivered to the skin next to the site at which HFS was applied are perceived as more intense compared with that at the contralateral control site, indicating the presence of heterosynaptic effects for electrical stimuli.
Assuntos
Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Nociceptores/fisiologia , Percepção do Tato/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Estimulação Física , Adulto JovemRESUMO
KEY POINTS: A recent animal study showed that high frequency electrical stimulation (HFS) of C-fibres induces a gliogenic heterosynaptic long-term potentiation at the spinal cord that is hypothesized to mediate secondary hyperalgesia in humans. Here this hypothesis was tested by predominantly activating C-fibre nociceptors in the area of secondary mechanical hyperalgesia induced by HFS in humans. It is shown that heat perception elicited by stimuli predominantly activating C-fibre nociceptors is greater, as compared to the control site, after HFS in the area of secondary mechanical hyperalgesia. This is the first study that confirms in humans the involvement of C-fibre nociceptors in the changes in heat sensitivity in the area of secondary mechanical hyperalgesia induced by HFS. ABSTRACT: It has recently been shown that high frequency electrical stimulation (HFS) of C-fibres induces a gliogenic heterosynaptic long-term potentiation (LTP) at the spinal cord in animals, which has been hypothesized to be the underlying mechanism of secondary hyperalgesia in humans. Here we tested this hypothesis using a method to predominantly activate quickly responding C-fibre nociceptors in the area of secondary hyperalgesia induced by HFS in humans. HFS was delivered to one of the two volar forearms in 18 healthy volunteers. Before, 20 min and 45 min after HFS, short-lasting (10 ms) high-intensity CO2 laser heat stimuli delivered to a very small area of the skin (0.15 mm2 ) were applied to the area of increased mechanical pinprick sensitivity at the HFS-treated arm and the homologous area of the contralateral control arm. During heat stimulation the electroencephalogram, reaction times and intensity of perception (numerical rating scale 0-100) were measured. After HFS, we observed a greater heat sensitivity, an enhancement in the number of detected trials, faster reaction times and an enhancement of the N2 wave of C-fibre laser-evoked potentials at the HFS-treated arm compared to the control arm. This is the first study that confirms in humans the involvement of C-fibre nociceptors in enhanced heat sensitivity in the area of secondary mechanical hyperalgesia induced by HFS.
Assuntos
Hiperalgesia/fisiopatologia , Fibras Nervosas Amielínicas/fisiologia , Nociceptividade , Nociceptores/fisiologia , Adulto , Feminino , Temperatura Alta , Humanos , Potenciais Evocados por Laser , MasculinoRESUMO
KEY POINTS: It is believed that secondary hyperalgesia (the increased sensitivity to mechanical nociceptive stimuli that develops after cutaneous tissue injury in the surrounding uninjured skin) is mediated by a subclass of nociceptors: the slowly adapting A-fibre mechano-heat nociceptors (AMH-type I). Here we tested this hypothesis. By using intense long-lasting heat stimuli, which are known to activate these slowly adapting AMH-type I nociceptors, we show that the perceived intensity elicited by these stimuli is not increased in the area of secondary hyperalgesia. Moreover, we show that during an A-fibre nerve conduction block the perception elicited by the long-lasting heat stimuli is significantly reduced in a time window that matches the response profile of the AMH-type I nociceptors. AMH-type I nociceptors contribute to the perception of sustained heat, but they do not mediate secondary hyperalgesia. Therefore, we propose that secondary hyperalgesia is mediated by high threshold mechanoreceptors. ABSTRACT: Secondary hyperalgesia refers to the increase in sensitivity to mechanical nociceptive stimuli delivered outside the area of tissue injury. Previous studies have suggested that secondary hyperalgesia is mediated by a specific class of myelinated nociceptors: slowly adapting A-fibre mechano- and heat-sensitive (AMH) type I nociceptors. Here, we tested this hypothesis by examining whether long-lasting heat stimuli, which are known to activate AMH-type I nociceptors, elicit enhanced responses when delivered to the area of secondary hyperalgesia induced by high frequency electrical stimulation of the skin (HFS). Before and 20 min after HFS, sustained 30 s radiant heat stimuli were delivered to the area of increased mechanical pinprick sensitivity while participants continuously rated intensity of perception using an online visual analog scale (0-100 mm). After HFS, no significant enhancement of heat perception was observed in the area of increased pinprick sensitivity. To establish that myelinated nociceptors actually contribute to the perception of sustained heat, we conducted a second experiment in which sustained heat stimuli were presented before and during an A-fibre nerve conduction block, achieved by applying a rubber band with weights which compresses the superficial radial nerve against the radius. During the block, heat perception was significantly reduced 17-33 s after the onset of the heat stimulus (before: mean = 53 mm, during: mean = 31 mm; P = 0.03), matching the response profile of AMH-type I nociceptors. These results support the notion that AMH-type I nociceptors contribute to the perception of sustained heat, but also show that these afferents do not mediate secondary hyperalgesia.
Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Fibras Nervosas Mielinizadas/metabolismo , Nociceptores/metabolismo , Adulto , Estimulação Elétrica/métodos , Feminino , Temperatura Alta , Humanos , Masculino , Mecanorreceptores/metabolismo , Condução Nervosa/fisiologia , Dor/fisiopatologia , Medição da Dor/métodos , Estimulação Física/métodos , Pele/inervação , Pele/metabolismo , Pele/fisiopatologia , Adulto JovemRESUMO
Secondary hyperalgesia is believed to be a key feature of "central sensitization" and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400-600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.
Assuntos
Córtex Cerebral/fisiopatologia , Potenciais Somatossensoriais Evocados , Hiperalgesia/fisiopatologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Adulto , Capsaicina/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Feminino , Humanos , Masculino , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Medição da Dor , Estimulação Física , Adulto JovemRESUMO
High-frequency electrical stimulation (HFS) of the human skin induces increased pain sensitivity in the surrounding unconditioned skin. The aim of the present study was to characterize the relative contribution of the different types of nociceptive and nonnociceptive afferents to the heterotopical hyperalgesia induced by HFS. In 17 healthy volunteers (9 men and 8 women), we applied HFS to the ventral forearm. The intensity of perception and event-related brain potentials (ERPs) elicited by vibrotactile stimuli exclusively activating nonnociceptive low-threshold mechanoreceptors and thermonociceptive stimuli exclusively activating heat-sensitive nociceptive afferents were recorded before and after HFS. The previously described mechanical hyperalgesia following HFS was confirmed by measuring the changes in the intensity of perception elicited by mechanical punctate stimuli. HFS increased the perceived intensity of both mechanical punctate and thermonociceptive stimuli applied to the surrounding unconditioned skin. The time course of the effect of HFS on the perception of mechanical and thermal nociceptive stimuli was similar. This indicates that HFS does not only induce mechanical hyperalgesia, but also induces heat hyperalgesia in the heterotopical area. Vibrotactile ERPs were also enhanced after HFS, indicating that nonnociceptive somatosensory input could contribute to the enhanced responses to mechanical pinprick stimuli. Finally, the magnitude of thermonociceptive ERPs was unaffected by HFS, indicating that type II A-fiber mechano-heat nociceptors, thought to be the primary contributor to these brain responses, do not significantly contribute to the observed heat hyperalgesia.
Assuntos
Encéfalo/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Hiperalgesia/fisiopatologia , Percepção da Dor/fisiologia , Fenômenos Fisiológicos da Pele , Percepção do Tato/fisiologia , Adulto , Estimulação Elétrica , Feminino , Antebraço , Temperatura Alta , Humanos , Masculino , Estimulação Física , Adulto JovemRESUMO
High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. Temperature-controlled CO2 laser stimulation was used to activate selectively low-threshold C-fiber afferents without concomitantly activating Aδ-fiber afferents. These stimuli were detected with reaction times compatible with the conduction velocity of C fibers. The intensity of perception and event-related brain potentials (ERPs) elicited by thermal stimuli delivered to the surrounding unconditioned skin were recorded before (T0) and after HFS (T1: 20 min after HFS; T2: 45 min after HFS). The contralateral forearm served as a control. Mechanical hyperalgesia following HFS was confirmed by measuring the change in the intensity of perception elicited by mechanical punctate stimuli. HFS resulted in increased intensity of perception to mechanical punctate stimulation and selective C-fiber thermal stimulation at both time points. In contrast, the N2 wave of the ERP elicited by C-fiber stimulation (679 ± 88 ms; means ± SD) was enhanced at T1 but not at T2. The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement.
Assuntos
Encéfalo/fisiologia , Potenciais Somatossensoriais Evocados , Hiperalgesia/fisiopatologia , Fibras Nervosas Amielínicas/fisiologia , Adulto , Feminino , Humanos , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Neurônios Aferentes/fisiologia , Limiar Sensorial , Percepção do Tato , Estimulação Elétrica Nervosa TranscutâneaRESUMO
BACKGROUND AND OBJECTIVES: Central sensitization (CS) is believed to play a role in many chronic pain conditions. Direct non-invasive recording from single nociceptive neurons is not feasible in humans, complicating CS establishment. This review discusses how secondary hyperalgesia (SHA), considered a manifestation of CS, affects physiological measures in healthy individuals and if these measures could indicate CS. It addresses controversies about heat sensitivity changes, the role of tactile afferents in mechanical hypersensitivity and detecting SHA through electrical stimuli. Additionally, it reviews the potential of neurophysiological measures to indicate CS presence. DATABASES AND DATA TREATMENT: Four databases, PubMed, ScienceDirect, Scopus and Cochrane Library, were searched using terms linked to 'hyperalgesia'. The search was limited to research articles in English conducted in humans until 2023. RESULTS: Evidence for heat hyperalgesia in the SHA area is sparse and seems to depend on the experimental method used. Minimal or no involvement of tactile afferents in SHA was found. At the spinal level, the threshold of the nociceptive withdrawal reflex (RIII) is consistently reduced during experimentally induced SHA. The RIII area and the spinal somatosensory potential (N13-SEP) amplitude are modulated only with long-lasting nociceptive input. At the brain level, pinprick-evoked potentials within the SHA area are increased. CONCLUSIONS: Mechanical pinprick hyperalgesia is the most reliable behavioural readout for SHA, while the RIII threshold is the most sensitive neurophysiological readout. Due to scarce data on reliability, sensitivity and specificity, none of the revised neurophysiological methods is currently suitable for CS identification at the individual level. SIGNIFICANCE: Gathering evidence for CS in humans is a crucial research focus, especially with the increasing interest in concepts such as 'central sensitization-like pain' or 'nociplastic pain'. This review clarifies which readouts, among the different behavioural and neurophysiological proxies tested in experimental settings, can be used to infer the presence of CS in humans.
RESUMO
Fillingim RB. Redefining sensitization could be a sensitive issue. PAIN Rep 2024;9:e1126.
RESUMO
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
RESUMO
OBJECTIVE: The aim of the present study was to investigate whether patients with persistent pain after breast cancer treatment show an enhanced and slowed dominant alpha activity in their electroencephalogram (EEG) recorded during rest in comparison with patients that also had undergone breast cancer treatment but do not have pain. METHODS: The spontaneous EEG was recorded during rest and before painful stimulation of the calf and analyzed with spectral analysis (Fast Fourier Transformation). Outcome measures, i.e., alpha indices (center of gravity and overall amplitude), were statistically tested between patients with and without persistent pain. RESULTS: In comparison with patients without pain, patients with persistent pain after breast cancer treatment show more alpha activity in their spontaneous EEG observed from parietal-occipital brain regions. CONCLUSION: Persistent pain after breast cancer treatment affects spontaneous brain activity, which might influence cognitive functioning.
Assuntos
Encéfalo/fisiopatologia , Neoplasias da Mama/terapia , Dor Crônica/fisiopatologia , Idoso , Eletroencefalografia , Feminino , Humanos , Pessoa de Meia-IdadeRESUMO
BACKGROUND: According to limited-capacity theories of attention, less attentional resources remain available when engaging in a high- versus a low-demanding cognitive task. This may reduce the perceived intensity and the evoked cortical responses of concomitant nociceptive stimuli. Whether and how the competition for limited attentional resources between a cognitive task and pain impacts the development of long-lasting hypersensitivity is unclear. METHODS: Eighty-four healthy participants were randomized into a low or high cognitive load group. Low-frequency electrical stimulation (LFS) of the skin was used to induce secondary hypersensitivity. We hypothesized that performing the high-load task during LFS would reduce the development of hypersensitivity. We examined whether painfulness, nonpain-related sympathetic arousal, or sex related to hypersensitivity, by assessing intensity and unpleasantness of mechanical pinprick stimulation. During task execution, we recorded steady-state evoked potentials evoked by LFS and skin conductance level for sympathetic arousal. Afterwards, participants reported task difficulty and LFS-related fear. For the primary outcomes, we used mixed analysis of variances. RESULTS: The results confirmed the difference in cognitive load. Although LFS successfully induced hypersensitivity, the high-load task did not reduce its development. Next, the steady-state evoked potentials did not differ between groups. Hypersensitivity correlated positively with pain-related fear and negatively with skin conductance level before LFS, despite the lack of group differences in skin conductance level. We did not find any sex differences in hypersensitivity. CONCLUSIONS: These results do not confirm that high cognitive load or sex modulate hypersensitivity, but show associations with pain-related fear and non-pain-related sympathetic arousal. SIGNIFICANCE: Previous research has mainly focused on cognitive load effects on the perception of acute painful stimuli. Yet this study extends our understanding by investigating cognitive load effects on the development of long-lasting secondary hypersensitivity, a common aspect in numerous persistent pain conditions. As cognitive tasks are presented during a painful procedure inducing secondary hypersensitivity, we test the long-lasting effects of cognitive load. Additionally, we used psychophysiological measurements to explored potential underlying mechanisms involving limited attentional resources and sympathetic arousal.
Assuntos
Nível de Alerta , Nociceptividade , Humanos , Masculino , Feminino , Nível de Alerta/fisiologia , Dor/psicologia , Medo , CogniçãoRESUMO
ABSTRACT: Temporomandibular disorders (TMD) include a group of musculoskeletal disorders that may involve increased responsiveness of nociceptive neurons in the central nervous system (ie, central sensitization). To test this hypothesis further, this study examined whether, as compared with healthy subjects, patients with chronic TMD have a greater propensity to develop secondary mechanical hyperalgesia-a phenomenon that can be confidently attributed to central sensitization. In this case-control study, we assessed the area of secondary mechanical hyperalgesia induced experimentally by delivering high-frequency electrical stimulation (HFS) to the volar forearm skin in 20 participants with chronic TMD and 20 matched healthy controls. High-frequency electrical stimulation consisted in 12 trains of constant-current electrical pulses (5 mA) delivered at 42 Hz. The area of secondary mechanical hyperalgesia was evaluated 30 minutes after applying HFS. The area of secondary mechanical hyperalgesia induced by HFS was on average 76% larger in the chronic TMD group (M = 67.7 cm 2 , SD = 28.2) than in the healthy control group (M = 38.4 cm 2 , SD = 14.9; P = 0.0003). Regarding secondary outcomes, there was no group difference in the intensity of secondary mechanical hyperalgesia, but allodynia to cotton after HFS was more frequent in the chronic TMD group. To the best of our knowledge, this is the first study to show that individuals with chronic TMD have an increased propensity to develop secondary hyperalgesia in a site innervated extratrigeminally. Our results contribute to a better understanding of the pathophysiology of chronic TMD.
Assuntos
Hiperalgesia , Transtornos da Articulação Temporomandibular , Humanos , Estudos de Casos e Controles , Sensibilização do Sistema Nervoso Central , Pele , Transtornos da Articulação Temporomandibular/complicaçõesRESUMO
High-frequency conditioning electrical stimulation (HFS) of human skin induces an increased pain sensitivity to mechanical stimuli in the surrounding nonconditioned skin. The aim of this study was to investigate the effect of HFS on reported pain sensitivity to single electrical stimuli applied within the area of conditioning stimulation. We also investigated the central nervous system responsiveness to these electrical stimuli by measuring event-related potentials (ERPs). Single electrical test stimuli were applied in the conditioned area before and 30 min after HFS. During electrical test stimulation, the reported pain intensity (numerical rating scale) and EEG (ERPs) were measured. Thirty minutes after conditioning stimulation, we observed a decrease of reported pain intensity at both the conditioned and control (opposite arm) skin site in response to the single electrical test stimuli. In contrast, we observed enhanced ERP amplitudes after HFS at the conditioned skin site, compared with control site, in response to the single electrical test stimuli. Recently, it has been proposed that ERPs, at least partly, reflect a saliency detection system. Therefore, the enhanced ERPs might reflect enhanced saliency to potentially threatening stimuli.
Assuntos
Condicionamento Operante , Potenciais Evocados , Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea , Adolescente , Adulto , Ondas Encefálicas , Feminino , Humanos , Masculino , Pele/inervação , TatoRESUMO
BACKGROUND: Central sensitization is thought to play a critical role in the development of chronic pain, and secondary mechanical hyperalgesia is considered one of its hall-mark features. Consequently, interventions capable of modulating its development could have important therapeutic value. Non-invasive neuromodulation of the left dorsolateral prefrontal cortex (DLPFC) has shown potential to reduce pain, both in healthy volunteers and in patients. Whether it can modulate the induction of central sensitization, however, is less well known. OBJECTIVE: To determine whether multifocal transcranial direct current stimulation (tDCS) targeting the left DLPFC affects the development of secondary mechanical hyperalgesia. METHODS: In this within-subjects, cross-over, double-blinded study, eighteen healthy volunteers participated in three experimental sessions. After 20 minutes of either anodal, cathodal, or sham multichannel tDCS over the left DLPFC, secondary mechanical hyperalgesia was induced using high-frequency electrical stimulation (HFS) of the volar forearm. We assessed intensity of perception to 128 mN mechanical pinprick stimuli at baseline and up to 240 minutes after HFS. We also mapped the area of mechanical hyperalgesia. RESULTS: HFS resulted in a robust and unilateral increase in the intensity of perception to mechanical pinprick stimuli at the HFS arm, which was not different between tDCS stimulation conditions. However, the area of hyperalgesia was reduced after anodal tDCS compared to sham. CONCLUSION: Anodal tDCS over the left DLPFC modestly modulates the size of the HFS-induced area of secondary mechanical hyperalgesia, suggesting that non-invasive neuromodulation targeting the left DLPFC may be a potential intervention to limit the development of central sensitization.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Estudos Cross-Over , Córtex Pré-Frontal Dorsolateral , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Hiperalgesia/terapia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodosRESUMO
BACKGROUND: High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to noxious electrical pinprick-like stimuli applied in the heterotopic skin area before, directly after and 30 minutes after HFS. RESULTS: We observed potential cortical electrophysiological correlates of heterotopic facilitation. Two different cortical correlates were found; the first one was a lateralized effect, i.e. a larger N100 amplitude on the conditioned arm than the control arm 30 minutes after end of HFS. This was comparable with the observed lateralized effect of visual analogue scale (VAS) scores as response to the mechanical punctate stimuli. The second correlate seems to be a more general (non-lateralized) effect, because the result affects both arms. On average for both arms the P200 amplitude increased significantly 30 minutes after end of HFS with respect to baseline. CONCLUSIONS: We suggest that for studying heterotopic nociceptive facilitation the evoked brain response is suitable and relevant for investigating plasticity at the level of the brain and is perhaps a more sensitive and reliable marker than the perceived pain intensity (e.g. VAS).
Assuntos
Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Nociceptores/fisiologia , Adulto , Comportamento/fisiologia , Estimulação Elétrica , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Medição da Dor , Estimulação Física , Adulto JovemRESUMO
SYNOPSIS: Central sensitization is (1) increasingly interpreted as central nervous system hyperexcitability that accounts for a general increase in sensitivity, and (2) used to explain a variety of pain and nonpain symptoms. In this commentary, we argue that such a broad interpretation might not be clinically useful because it fails to distinguish one patient from another based on pathophysiological mechanisms and does not facilitate tailored treatment. We recommend that clinicians use a person-centered approach when assessing and managing patients, considering the different interacting processes/mechanisms that can contribute to a patient's clinical presentation. J Orthop Sports Phys Ther 2021;51(5):204-206. Epub 15 Mar 2021. doi:10.2519/jospt.2021.10340.
Assuntos
Sensibilização do Sistema Nervoso Central , Dor Crônica/fisiopatologia , Humanos , Terminologia como AssuntoRESUMO
Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response in pain perception can be induced in humans using high-frequency electrical stimulation (HFS). The aim of this study was to induce spinal heterosynaptic LTP using HFS and investigate its heterotopic effects on event-related potentials (ERPs) to repeated nonpainful cutaneous stimuli as a possible electrophysiological cortical correlate of sensitization. Twenty-two healthy subjects were randomly assigned to one of the two experimental conditions: HFS and control stimulation. Before and after the stimulation, both conditions received heterotopic mechanical (pinprick) and paired nonpainful electrical test stimuli to quantify and confirm the effects of HFS on the behavioral level. ERPs to paired nonpainful electrical stimulation were measured simultaneously. Conditioning HFS resulted in significant heterotopic effects after 30 min, including increased perceived intensity in response to (pinprick) mechanical and paired nonpainful electrical stimulation compared with control. The paired nonpainful electrical stimuli were accompanied by significantly enhanced responses regarding the ERP N1-P2 peak-to-peak and P300 amplitude compared with control. These findings suggest that HFS is capable of producing heterosynaptic spinal LTP that can be measured not only behaviorally but also using ERPs.
Assuntos
Potenciação de Longa Duração/fisiologia , Nociceptores/fisiologia , Sinapses/fisiologia , Adulto , Estimulação Elétrica , Potenciais Evocados/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiologiaRESUMO
Intense or sustained activation of peripheral nociceptors can induce central sensitization. This enhanced responsiveness to nociceptive input of the central nervous system primarily manifests as an increased sensitivity to painful mechanical pinprick stimuli extending beyond the site of injury (secondary mechanical hyperalgesia) and is thought to be a key mechanism in the development of chronic pain, such as persistent post-operative pain. It is increasingly recognized that emotional and cognitive factors can strongly influence the pain experience. Furthermore, through their potential effects on pain modulation circuits including descending pathways to the spinal cord, it has been hypothesized that these emotional and cognitive factors could constitute risk factors for the susceptibility to develop chronic pain. Here, we tested whether, in healthy volunteers, the experimental induction of central sensitization by peripheral nociceptive input can be modulated by selective spatial attention. While participants performed a somatosensory detection task that required focusing attention towards one of the forearms, secondary hyperalgesia was induced at both forearms using bilateral and simultaneous high-frequency electrical stimulation (HFS) of the skin. HFS induced an increased sensitivity to mechanical pinprick stimuli at both forearms, directly (T1) and 20 min (T2) after HFS, confirming the successful induction of secondary hyperalgesia at both forearms. Most importantly, at T2, the HFS-induced increase in pinprick sensitivity as well as the area of secondary hyperalgesia was greater at the attended arm as compared to the non-attended arm. This indicates that top-down attentional factors can modulate the development of central sensitization by peripheral nociceptive input, and that the focus of spatial attention, besides its modulatory effects on perception, can affect activity-dependent neuroplasticity.