RESUMO
Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isovalently doped BaFe2(As(1-x)P(x))(2) is consistent with the observation of a linear temperature dependence of the low-temperature penetration depth in this material.
RESUMO
Inferring the nature of disorder in the media where elastic objects are nucleated is of crucial importance for many applications but remains a challenging basic-science problem. Here we propose a method to discern whether weak-point or strong-correlated disorder dominates based on characterizing the distribution of the interaction forces between objects mapped in large fields-of-view. We illustrate our proposal with the case-study system of vortex structures nucleated in type-II superconductors with different pinning landscapes. Interaction force distributions are computed from individual vortex positions imaged in thousands-vortices fields-of-view in a two-orders-of-magnitude-wide vortex-density range. Vortex structures nucleated in point-disordered media present Gaussian distributions of the interaction force components. In contrast, if the media have dilute and randomly-distributed correlated disorder, these distributions present non-Gaussian algebraically-decaying tails for large force magnitudes. We propose that detecting this deviation from the Gaussian behavior is a fingerprint of strong disorder, in our case originated from a dilute distribution of correlated pinning centers.
RESUMO
Vortex thermal fluctuations in heavily underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) (T(c)=69.4 K) are studied using Josephson plasma resonance. From the zero-field data, we obtain the c-axis penetration depth lambda(L,c)(0)=230+/-10 micrometer and the anisotropy ratio gamma(T). The low plasma frequency allows us to study phase correlations over the whole vortex solid state and to extract a wandering length r(w) of vortex pancakes. The temperature dependence of r(w) as well as its increase with dc magnetic field is explained by the renormalization of the vortex line tension by the fluctuations, suggesting that this softening is responsible for the dissociation of the vortices at the first order transition.