Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Pediatr Gastroenterol Nutr ; 70(1): 12-19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714477

RESUMO

OBJECTIVES: Microbial communities influencing health and disease are being increasingly studied in preterm neonates. There exists little data, however, detailing longitudinal microbial acquisition, especially in the most extremely preterm (<26 weeks' gestation). This study aims to characterize the development of the microbiota in this previously under-represented cohort. METHODS: Seven extremely preterm infant-mother dyads (mean gestation 23.6 weeks) were recruited from a single neonatal intensive care unit. Oral and endotracheal secretions, stool, and breast milk (n = 157 total), were collected over the first 60 days of life. Targeted 16S rRNA gene sequencing identified bacterial communities present. RESULTS: Microbiota of all body sites were most similar immediately following birth and diverged longitudinally. Throughout the sampling period Escherichia, Enterococcus, Staphylococcus, and an Enterobacteriaceae were dominant and well dispersed across all sites. Temporal divergence of the stool from other microbiota was driven by decreasing diversity and significantly greater proportional abundance of Bifidobacteriaceae compared to other sites. CONCLUSIONS: Four taxa dominated all anatomical sampling sites. Rare taxa promoted dissimilarity. Cross-seeding between upstream communities and the stool was demonstrated, possibly relating to buccal colostrum/breast milk exposure and indwelling tubes. Given the importance of dysbiosis in health and disease of extremely preterm infants, better understanding of microbial acquisition within this context may be of clinical benefit.


Assuntos
Secreções Corporais/microbiologia , Fezes/microbiologia , Lactente Extremamente Prematuro , Microbiota , Leite Humano/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , RNA Ribossômico 16S/análise , Traqueia/microbiologia
2.
New Phytol ; 220(4): 1172-1184, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29350759

RESUMO

Global warming is resulting in increased frequency of weather extremes. Root-associated fungi play important roles in terrestrial biogeochemical cycling processes, but the way in which they are affected by extreme weather is unclear. Here, we performed long-term field monitoring of the root-associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root-associated fungi was performed over a 3-yr period by metabarcoding the fungal internal transcribed spacer (ITS) region. Repeated soil testing and continuous climatic monitoring supplemented community data, and the relative effects of environmental and temporal variation were determined on the root-associated fungal community. Soil saturation and surface water were recorded throughout the early growing season of 2012, following extreme rainfall. This was associated with a crash in the richness and relative abundance of ectomycorrhizal fungi, with each declining by over 50%. Richness and relative abundance of saprophytes and pathogens increased. We conclude that extreme rainfall events may be important yet overlooked determinants of root-associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems.


Assuntos
Fungos/fisiologia , Micobioma , Raízes de Plantas/microbiologia , Chuva , Clima , Fungos/classificação , Geografia , Filogenia , Fatores de Tempo
3.
Gut ; 65(6): 944-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25856344

RESUMO

OBJECTIVE: To determine the existence of mucosal dysbiosis in siblings of patients with Crohn's disease (CD) using 454 pyrosequencing and to comprehensively characterise and determine the influence of genotypical and phenotypical factors, on that dysbiosis. Siblings of patients with CD have elevated risk of developing CD and display aspects of disease phenotype, including faecal dysbiosis. Whether the mucosal microbiota is disrupted in these at-risk individuals is unknown. DESIGN: Rectal biopsy DNA was extracted from 21 patients with quiescent CD, 17 of their healthy siblings and 19 unrelated healthy controls. Mucosal microbiota was analysed by 16S rRNA gene pyrosequencing and were classified into core and rare species. Genotypical risk was determined using Illumina Immuno BeadChip, faecal calprotectin by ELISA and blood T-cell phenotype by flow cytometry. RESULTS: Core microbiota of both patients with CD and healthy siblings was significantly less diverse than controls. Metacommunity profiling (Bray-Curtis (SBC) index) showed the sibling core microbial composition to be more similar to CD (SBC=0.70) than to healthy controls, whereas the sibling rare microbiota was more similar to healthy controls (SBC=0.42). Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity both between siblings and controls, and between patients and controls. Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within groups, of which genotype had the largest effect. CONCLUSIONS: Individuals with elevated CD-risk display mucosal dysbiosis characterised by reduced diversity of core microbiota and lower abundance of F. prausnitzii. This dysbiosis in healthy people at risk of CD implicates microbiological processes in CD pathogenesis.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Disbiose/microbiologia , Microbiota , Irmãos , Adolescente , Adulto , Biópsia , Estudos de Casos e Controles , Doença de Crohn/genética , Faecalibacterium prausnitzii/isolamento & purificação , Fezes/microbiologia , Feminino , Genótipo , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Masculino , Fenótipo
4.
J Clin Microbiol ; 52(8): 3011-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920767

RESUMO

Spontaneously expectorated sputum is traditionally used as the sampling method for the investigation of lower airway infections. While guidelines exist for the handling of these samples for culture-based diagnostic microbiology, there is no comparable consensus on their handling prior to culture-independent analysis. The increasing incorporation of culture-independent approaches in diagnostic microbiology means that it is of critical importance to assess potential biases. The aim of this study was to assess the impact of delayed freezing on culture-independent microbiological analyses and to identify acceptable parameters for sample handling. Sputum samples from eight adult cystic fibrosis (CF) patients were collected and aliquoted into sterile Bijou bottles. Aliquots were stored at room temperature before being frozen at -80 °C for increasing intervals, up to a 72-h period. Samples were treated with propidium monoazide to distinguish live from dead cells prior to DNA extraction, and 16S rRNA gene pyrosequencing was used to characterize their bacterial compositions. Substantial variation was observed in samples with high-diversity bacterial communities over time, whereas little variation was observed in low-diversity communities dominated by recognized CF pathogens, regardless of time to freezing. Partitioning into common and rare species demonstrated that the rare species drove changes in similarity. The percentage abundance of anaerobes over the study significantly decreased after 12 h at room temperature (P = 0.008). Failure to stabilize samples at -80 °C within 12 h of collection results in significant changes in the detected community composition.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Fibrose Cística/complicações , Infecções Respiratórias/microbiologia , Manejo de Espécimes/métodos , Escarro/microbiologia , Adulto , Bactérias/genética , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Fatores de Tempo
5.
Thorax ; 68(8): 731-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23564400

RESUMO

RATIONALE: Despite the potentially important roles for infection in adult non-cystic fibrosis (CF) bronchiectasis disease progression, the bacterial species present in the lower airways of these patients is poorly characterised. OBJECTIVES: To provide a comprehensive cross-sectional analysis of bacterial content of lower airway samples from patients with non-CF bronchiectasis using culture-independent microbiology. METHODS: Paired induced sputum and bronchoalveolar lavage samples, obtained from 41 adult patients with non-CF bronchiectasis, were analysed by 16S ribosomal RNA gene pyrosequencing. Assessment of species distribution and dispersal allowed 'core' and 'satellite' bacterial populations to be defined for this patient group. Microbiota characteristics correlated with clinical markers of disease. MEASUREMENT AND MAIN RESULTS: 140 bacterial species were identified, including those associated with respiratory tract infections and opportunistic infections more generally. A group of core species, consisting of species detected frequently and in high abundance, was defined. Core species included those currently associated with infection in bronchiectasis, such as Pseudomonas aeruginosa, Haemophilus influenzae and Streptococcus pneumoniae, and many species that would be unlikely to be reported through standard diagnostic surveillance. These included members of the genera Veillonella, Prevotella and Neisseria. The comparative contribution of core and satellite groups suggested a low level of random species acquisition. Bacterial diversity was significantly positively correlated with forced expiratory volume in 1 s (FEV1) and bacterial community composition similarity correlated significantly with FEV1, neutrophil count and Leicester cough score. CONCLUSIONS: Characteristics of the lower airways microbiota of adult patients with non-CF bronchiectasis correlate significantly with clinical markers of disease severity.


Assuntos
Bactérias/genética , Brônquios/microbiologia , Bronquiectasia/diagnóstico , DNA Bacteriano/análise , Eritromicina/administração & dosagem , Administração Oral , Adulto , Idoso , Antibacterianos/administração & dosagem , Bactérias/isolamento & purificação , Bronquiectasia/tratamento farmacológico , Bronquiectasia/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Contagem de Colônia Microbiana , Estudos Transversais , Fibrose Cística , Progressão da Doença , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Metagenoma , Pessoa de Meia-Idade
6.
Thorax ; 67(10): 867-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22707521

RESUMO

BACKGROUND: Culture-independent analysis of the respiratory secretions of people with cystic fibrosis (CF) has identified many bacterial species not previously detected using culture in this context. However, little is known about their clinical significance or persistence in CF airways. METHODS: The authors characterised the viable bacterial communities in the sputum collected from 14 patients at monthly intervals over 1 year using a molecular community profiling technique-terminal restriction fragment length polymorphism. Clinical characteristics were also collected, including lung function and medications. Ecological community measures were determined for each sample. Microbial community change over time within subjects was defined using ecological analytical tools, and these measures were compared between subjects and to clinical features. RESULTS: Bacterial communities were stable within subjects over time but varied between subjects, despite similarities in clinical course. Antibiotic therapy temporarily perturbed these communities which generally returned to pretreatment configurations within 1 month. Species usually considered CF pathogens and those not previously regarded as such exhibited similar patterns of persistence. Less diverse sputum bacterial communities were correlated to lung disease severity and relative abundance of Pseudomonas aeruginosa. CONCLUSION: Whilst not true in all cases, the microbial communities that chronically infect the airways of patients with CF can vary little over a year despite antibiotic perturbation. The species present tended to vary more between than within subjects, suggesting that each CF airway infection is unique, with relatively stable and resilient bacterial communities. The inverse relationship between community richness and disease severity is similar to findings reported in other mucosal infections.


Assuntos
Fibrose Cística/microbiologia , Sistema Respiratório/microbiologia , Escarro/microbiologia , Adulto , Antibacterianos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Biodiversidade , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Progressão da Doença , Feminino , Humanos , Masculino , Metagenoma , Polimorfismo de Fragmento de Restrição , Análise de Componente Principal
7.
Environ Microbiol ; 14(9): 2293-307, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22591022

RESUMO

Since industrialization global CO(2) emissions have increased, and as a consequence oceanic pH is predicted to drop by 0.3-0.4 units before the end of the century - a process coined 'ocean acidification'. Consequently, there is significant interest in how pH changes will affect the ocean's biota and integral processes. We investigated marine picoplankton (0.2-2 µm diameter) community response to predicted end of century CO(2) concentrations, via a 'high-CO(2) ' (∼ 750 ppm) large-volume (11 000 l) contained seawater mesocosm approach. We found little evidence of changes occurring in bacterial abundance or community composition due to elevated CO(2) under both phytoplankton pre-bloom/bloom and post-bloom conditions. In contrast, significant differences were observed between treatments for a number of key picoeukaryote community members. These data suggested a key outcome of ocean acidification is a more rapid exploitation of elevated CO(2) levels by photosynthetic picoeukaryotes. Thus, our study indicates the need for a more thorough understanding of picoeukaryote-mediated carbon flow within ocean acidification experiments, both in relation to picoplankton carbon sources, sinks and transfer to higher trophic levels.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Água do Mar/química , Bactérias/classificação , Bactérias/genética , Carbono/metabolismo , Dióxido de Carbono/química , Eucariotos/fisiologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Filogenia , Fitoplâncton/fisiologia
8.
Environ Microbiol ; 13(1): 241-249, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840583

RESUMO

Evidence suggests that microbial communities show patterns of spatial scaling which can be driven by geographical distance and environmental heterogeneity. Here we demonstrate that human management can have a major impact on microbial distribution patterns at both the local and landscape scale. Mycorrhizal fungi are vital components of terrestrial ecosystems, forming a mutualistic symbiosis with plant roots which has a major impact on above ground ecology and productivity. We used contrasting agricultural systems to investigate the spatial scaling of the most widespread mycorrhizal fungus group, the arbuscular mycorrhizal fungi (AMF). Using multiple sampling sites with a maximum separation of 250 km we describe for the first time the roles which land management, environmental heterogeneity and geographical distance play in determining spatial patterns of microbial distribution. Analysis of AMF taxa-area relationships at each sampling site revealed that AMF diversity and spatial turnover was greater under organic relative to conventional farm management. At the regional scale (250 km) distance-decay analyses showed that there was significant change in AMF community composition with distance, and that this was greater under organic relative to conventional management. Environmental heterogeneity was found to be the major factor determining turnover of AMF taxa at the landscape scale. Overall we demonstrate that human management can play a key role in determining the turnover of microbial communities at both the local and regional scales.


Assuntos
Agricultura/métodos , Ecossistema , Geografia , Micorrizas/genética , Microbiologia do Solo , Humanos , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Reino Unido
9.
Microbiome ; 9(1): 19, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482913

RESUMO

BACKGROUND: The plant microbiome plays a vital role in determining host health and productivity. However, we lack real-world comparative understanding of the factors which shape assembly of its diverse biota, and crucially relationships between microbiota composition and plant health. Here we investigated landscape scale rhizosphere microbial assembly processes in oilseed rape (OSR), the UK's third most cultivated crop by area and the world's third largest source of vegetable oil, which suffers from yield decline associated with the frequency it is grown in rotations. By including 37 conventional farmers' fields with varying OSR rotation frequencies, we present an innovative approach to identify microbial signatures characteristic of microbiomes which are beneficial and harmful to the host. RESULTS: We show that OSR yield decline is linked to rotation frequency in real-world agricultural systems. We demonstrate fundamental differences in the environmental and agronomic drivers of protist, bacterial and fungal communities between root, rhizosphere soil and bulk soil compartments. We further discovered that the assembly of fungi, but neither bacteria nor protists, was influenced by OSR rotation frequency. However, there were individual abundant bacterial OTUs that correlated with either yield or rotation frequency. A variety of fungal and protist pathogens were detected in roots and rhizosphere soil of OSR, and several increased relative abundance in root or rhizosphere compartments as OSR rotation frequency increased. Importantly, the relative abundance of the fungal pathogen Olpidium brassicae both increased with short rotations and was significantly associated with low yield. In contrast, the root endophyte Tetracladium spp. showed the reverse associations with both rotation frequency and yield to O. brassicae, suggesting that they are signatures of a microbiome which benefits the host. We also identified a variety of novel protist and fungal clades which are highly connected within the microbiome and could play a role in determining microbiome composition. CONCLUSIONS: We show that at the landscape scale, OSR crop yield is governed by interplay between complex communities of both pathogens and beneficial biota which is modulated by rotation frequency. Our comprehensive study has identified signatures of dysbiosis within the OSR microbiome, grown in real-world agricultural systems, which could be used in strategies to promote crop yield. Video abstract.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Microbiota/genética , Óleo de Brassica napus , Microbiologia do Solo , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , Rizosfera
10.
Front Microbiol ; 12: 711134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002989

RESUMO

Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies. Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (<18 years) microbiota in acute and chronic respiratory conditions, with >10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses. Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively. Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.

12.
Environ Microbiol ; 12(3): 670-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20002134

RESUMO

Patterns of taxa abundance distributions are the result of the combined effects of historical and biological processes and as such are central to ecology. It is accepted that a taxa abundance distribution for a given community of animals or plants following a perturbation will typically change in structure from one of high evenness to increasing dominance. Subsequently, such changes in evenness have been used as indicators of biological integrity and environmental assessment. Here, using replicated experimental treehole microcosms perturbed with different concentrations of the pollutant pentachlorophenol, we investigated whether changes in bacterial community structure would reflect the effects of anthropogenic stress in a similar manner to larger organisms. Community structure was visualized using rank-abundance plots fitted with linear regression models. The slopes of the regression models were used as a descriptive statistic of changes in evenness over time. Our findings showed that bacterial community structure reflected the impact and the recovery from an anthropogenic disturbance. In addition, the intensity of impact and the rate of recovery to pre-perturbation structure were dose-dependent. These properties of bacterial community structures may potentially provide a metric for environmental assessment and regulation.


Assuntos
Bactérias , Ecossistema , Poluentes Ambientais/farmacologia , Pentaclorofenol/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Humanos , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
13.
J Clin Microbiol ; 48(1): 78-86, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906901

RESUMO

Sampling of the lower airways of the adult cystic fibrosis (CF) lung has received insufficient detailed consideration, with the importance of sampling strategies for bacteriological outcome not known. Although spontaneously expectorated sputum (SES) samples are often used for diagnostic bacteriological analysis, induced sputum (IS) methods have advantages. This study examined whether significant differences in bacterial content were detected when using a culture-independent, molecular profiling technique to analyze SES or IS samples. Moreover, this work examined what trends relating to bacterial species distributions and reproducibility were found in sequentially induced sputum samples and what implications this has for pathogen detection. Terminal restriction fragment length polymorphism (T-RFLP) analysis was performed on a SES sample and 4 subsequent IS samples taken at 5-min intervals from 10 clinically stable, adult CF patients. This was repeated over 3 sampling days, with variability between samples, induction periods, and sampling days determined. A diverse range of bacterial species, including potentially novel pathogens, was found. No significant difference in bacterial content was observed for either SES or serial IS samples. On average, the analysis of a single sample from any time point resolved approximately 58% of total bacterial diversity achieved by analysis of an SES sample and 4 subsequent IS samples. The reliance on analysis of a single respiratory sample was not sufficient for the detection of recognized CF pathogens in all instances. Close correlation between T-RFLP and microbiological data in the detection of key species indicates the importance of these findings in routine diagnostics for the detection of recognized and novel CF pathogens.


Assuntos
Bactérias/classificação , Infecções Bacterianas/microbiologia , Biodiversidade , Fibrose Cística/complicações , Pulmão/microbiologia , Metagenômica , Polimorfismo de Fragmento de Restrição , Adulto , Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Escarro/microbiologia , Adulto Jovem
14.
Microbiome ; 8(1): 45, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32238195

RESUMO

BACKGROUND: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informative indicator of lung disease state in CF. RESULTS: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance. Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate relationships between microbiota characteristics and lung function, and the factors contributing to microbiota variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of individual patient were increasingly dominated by recognised CF pathogens as lung function decreased. Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function. Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite taxa. CONCLUSIONS: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the dominant bacterial species, in combination with measures of lung function, can be used as informative indicators of disease state in CF. Video Abstract.


Assuntos
Bactérias/classificação , Fibrose Cística/microbiologia , Pulmão/microbiologia , Pulmão/fisiopatologia , Microbiota , Adulto , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Inflamação , Pulmão/efeitos dos fármacos , Masculino , Testes de Função Respiratória , Análise de Sequência de DNA , Escarro/microbiologia , Estados Unidos , Adulto Jovem
15.
Environ Microbiol ; 10(6): 1411-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18205822

RESUMO

Microorganisms operate at a range of spatial and temporal scales acting as key drivers of ecosystem properties. Therefore, many key questions in microbial ecology require the consideration of both spatial and temporal scales. Spatial scaling, in particular the species-area relationship (SAR), has a long history in ecology and has recently been addressed in microbial ecology. However, the temporal analogue of the SAR, the species-time relationship, has received far less attention even in the science of general ecology. Here we focus upon the role of temporal scaling in microbial ecological patterns by coupling molecular characterization of bacterial communities in discrete island (bioreactor) systems with a macroecological approach. Our findings showed that the temporal scaling exponent (slope), and therefore taxa turnover of the bacterial taxa-time relationship decreased as selective pressure (industrial wastewater concentration) increased. Also, as the concentration of industrial wastewater increased across the bioreactors, we observed a gradual switch from stochastic community assembly to more deterministic (niche)-based considerations. The identification of broad-scale statistical patterns is particularly relevant to microbial ecology, as it is frequently difficult to identify individual species or their functions. In this study, we identify wide-reaching statistical patterns of diversity and show that they are shaped by the prevalent underlying ecological factors.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Ecologia , Microbiologia da Água , Reatores Biológicos , Contagem de Colônia Microbiana , Impressões Digitais de DNA , DNA Bacteriano/genética , Resíduos Industriais , Fatores de Tempo
16.
FEMS Microbiol Ecol ; 62(2): 171-80, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17937674

RESUMO

Two recent, independent advances in ecology have generated interest and controversy: the development of neutral community models (NCMs) and the extension of biogeographical relationships into the microbial world. Here these two advances are linked by predicting an observed microbial taxa-volume relationship using an NCM and provide the strongest evidence so far for neutral community assembly in any group of organisms, macro or micro. Previously, NCMs have only ever been fitted using species-abundance distributions of macroorganisms at a single site or at one scale and parameter values have been calibrated on a case-by-case basis. Because NCMs predict a malleable two-parameter taxa-abundance distribution, this is a weak test of neutral community assembly and, hence, of the predictive power of NCMs. Here the two parameters of an NCM are calibrated using the taxa-abundance distribution observed in a small waterborne bacterial community housed in a bark-lined tree-hole in a beech tree. Using these parameters, unchanged, the taxa-abundance distributions and taxa-volume relationship observed in 26 other beech tree communities whose sizes span three orders of magnitude could be predicted. In doing so, a simple quantitative ecological mechanism to explain observations in microbial ecology is simultaneously offered and the predictive power of NCMs is demonstrated.


Assuntos
Bactérias/crescimento & desenvolvimento , Ecossistema , Microbiologia Ambiental , Modelos Biológicos , Biodiversidade , Fagus/microbiologia
17.
Gut Microbes ; 8(4): 359-365, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28112583

RESUMO

Siblings of patients with Crohn's disease (CD) have elevated risk of developing CD and display aspects of disease phenotype, including faecal dysbiosis. In our recent article we have used 16S rRNA gene targeted high-throughput sequencing to comprehensively characterize the mucosal microbiota in healthy siblings of CD patients, and determine the influence of genotypic and phenotypic factors on the gut microbiota (dysbiosis). We have demonstrated that the core microbiota of both patients with CD and healthy siblings is significantly less diverse than controls. Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity between both patients and controls and between siblings and controls. Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within groups, of which genotype had the largest effect. Individuals with elevated CD-risk display mucosal dysbiosis characterized by reduced diversity of core microbiota and lower abundance of F. prausnitzii. The presence of this dysbiosis in healthy people at-risk of CD implicates microbiological processes in CD pathogenesis.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Irmãos , Bactérias/classificação , Bactérias/genética , Disbiose/microbiologia , Feminino , Genótipo , Humanos , Masculino , Fenótipo
18.
ISME J ; 11(3): 663-675, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983724

RESUMO

Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same physical niche spaces with both affecting host nutrition and health. However, associations between the two are poorly understood. Here we used the commonly parasitized European shag (Phalacrocorax aristotelis) as a model wild host. Forty live adults from the same colony were sampled. Endoscopy was employed to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment in the proventriculus, diverting host immune responses away from themselves. This study, within live wild animals, provides a vital foundation to better understand the mechanisms that underpin the three-way relationship between helminths, microbiota and hosts.


Assuntos
Infecções por Ascaridida/veterinária , Ascaridoidea/classificação , Ascaridoidea/isolamento & purificação , Doenças das Aves/parasitologia , Aves , Trato Gastrointestinal/parasitologia , Animais , Infecções por Ascaridida/parasitologia , Ascaridoidea/genética , Aves/classificação , Feminino , Masculino
19.
Artigo em Inglês | MEDLINE | ID: mdl-28634574

RESUMO

Necrotising enterocolitis (NEC) and sepsis are serious diseases of preterm infants that can result in feeding intolerance, the need for bowel resection, impaired physiological and neurological development, and high mortality rates. Neonatal healthcare improvements have allowed greater survival rates in preterm infants leading to increased numbers at risk of developing NEC and sepsis. Gut bacteria play a role in protection from or propensity to these conditions and have therefore, been studied extensively using targeted 16S rRNA gene sequencing methods. However, exact epidemiology of these conditions remain unknown and the role of the gut microbiota in NEC remains enigmatic. Many studies have confounding variables such as differing clinical intervention strategies or major methodological issues such as the inability of 16S rRNA gene sequencing methods to determine viable from non-viable taxa. Identification of viable community members is important to identify links between the microbiota and disease in the highly unstable preterm infant gut. This is especially important as remnant DNA is robust and persists in the sampling environment following cell death. Chelation of such DNA prevents downstream amplification and inclusion in microbiota characterisation. This study validates use of propidium monoazide (PMA), a DNA chelating agent that is excluded by an undamaged bacterial membrane, to reduce bias associated with 16S rRNA gene analysis of clinical stool samples. We aim to improve identification of the viable microbiota in order to increase the accuracy of clinical inferences made regarding the impact of the preterm gut microbiota on health and disease. Gut microbiota analysis was completed on stools from matched twins (n = 16) that received probiotics. Samples were treated with PMA, prior to bacterial DNA extraction. Meta-analysis highlighted a significant reduction in bacterial diversity in 68.8% of PMA treated samples as well as significantly reduced overall rare taxa abundance. Importantly, overall abundances of genera associated with protection from and propensity to NEC and sepsis such as: Bifidobacterium; Clostridium, and Staphylococcus sp. were significantly different following PMA-treatment. These results suggest non-viable cell exclusion by PMA-treatment reduces bias in gut microbiota analysis from which clinical inferences regarding patient susceptibility to NEC and sepsis are made.


Assuntos
Bactérias/classificação , Enterocolite Necrosante/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Azidas , Bactérias/genética , Bactérias/isolamento & purificação , Viés , Biodiversidade , DNA Bacteriano/genética , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/mortalidade , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido Prematuro , Reação em Cadeia da Polimerase , Probióticos/uso terapêutico , Propídio/análogos & derivados , RNA Ribossômico 16S/genética , Taxa de Sobrevida
20.
Front Microbiol ; 7: 195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941720

RESUMO

Root-associated fungi are key contributors to ecosystem functioning, however, the factors which determine community assembly are still relatively poorly understood. This study simultaneously quantified the roles of geographical distance, environmental heterogeneity and time in determining root-associated fungal community composition at the local scale within a short rotation coppice (SRC) willow plantation. Culture independent molecular analyses of the root-associated fungal community suggested a strong but temporally variable effect of geographical distance among fungal communities in terms of composition at the local geographical level. Whilst these distance effects were most prevalent on October communities, soil pH had an effect on structuring of the communities throughout the sampling period. Given the temporal variation in the effects of geographical distance and the environment for shaping root-associated fungal communities, there is clearly need for a temporal component to sampling strategies in future investigations of fungal ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA