Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(4): 690-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206363

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is a highly heterogeneous disease for which new subgroups ('clusters') have been proposed based on disease severity: moderate age-related diabetes (MARD), moderate obesity-related diabetes (MOD), severe insulin-deficient diabetes (SIDD) and severe insulin-resistant diabetes (SIRD). It is unknown how disease severity is reflected in terms of quality of life in these clusters. Therefore, we aimed to investigate the cluster characteristics and cluster-wise evolution of quality of life in the previously defined clusters of type 2 diabetes. METHODS: We included individuals with type 2 diabetes from the Maastricht Study, who were allocated to clusters based on a nearest centroid approach. We used logistic regression to evaluate the cluster-wise association with diabetes-related complications. We plotted the evolution of HbA1c levels over time and used Kaplan-Meier curves and Cox regression to evaluate the cluster-wise time to reach adequate glycaemic control. Quality of life based on the Short Form 36 (SF-36) was also plotted over time and adjusted for age and sex using generalised estimating equations. The follow-up time was 7 years. Analyses were performed separately for people with newly diagnosed and already diagnosed type 2 diabetes. RESULTS: We included 127 newly diagnosed and 585 already diagnosed individuals. Already diagnosed people in the SIDD cluster were less likely to reach glycaemic control than people in the other clusters, with an HR compared with MARD of 0.31 (95% CI 0.22, 0.43). There were few differences in the mental component score of the SF-36 in both newly and already diagnosed individuals. In both groups, the MARD cluster had a higher physical component score of the SF-36 than the other clusters, and the MOD cluster scored similarly to the SIDD and SIRD clusters. CONCLUSIONS/INTERPRETATION: Disease severity suggested by the clusters of type 2 diabetes is not entirely reflected in quality of life. In particular, the MOD cluster does not appear to be moderate in terms of quality of life. Use of the suggested cluster names in practice should be carefully considered, as the non-neutral nomenclature may affect disease perception in individuals with type 2 diabetes and their healthcare providers.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Qualidade de Vida , Insulina
2.
Psychol Med ; : 1-10, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469703

RESUMO

BACKGROUND: Cerebral microvascular dysfunction may contribute to depression via disruption of brain structures involved in mood regulation, but evidence is limited. We investigated the association of retinal microvascular function, a proxy for microvascular function in the brain, with incidence and trajectories of clinically relevant depressive symptoms. METHODS: Longitudinal data are from The Maastricht Study of 5952 participants (59.9 ± 8.5 years/49.7% women) without clinically relevant depressive symptoms at baseline (2010-2017). Central retinal arteriolar equivalent and central retinal venular equivalent (CRAE and CRVE) and a composite score of flicker light-induced retinal arteriolar and venular dilation were assessed at baseline. We assessed incidence and trajectories of clinically relevant depressive symptoms (9-item Patient Health Questionnaire score ⩾10). Trajectories included continuously low prevalence (low, n = 5225 [87.8%]); early increasing, then chronic high prevalence (early-chronic, n = 157 [2.6%]); low, then increasing prevalence (late-increasing, n = 247 [4.2%]); and remitting prevalence (remitting, n = 323 [5.4%]). RESULTS: After a median follow-up of 7.0 years (range 1.0-11.0), 806 (13.5%) individuals had incident clinically relevant depressive symptoms. After full adjustment, a larger CRAE and CRVE were each associated with a lower risk of clinically relevant depressive symptoms (hazard ratios [HRs] per standard deviation [s.d.]: 0.89 [95% confidence interval (CI) 0.83-0.96] and 0.93 [0.86-0.99], respectively), while a lower flicker light-induced retinal dilation was associated with a higher risk of clinically relevant depressive symptoms (HR per s.d.: 1.10 [1.01-1.20]). Compared to the low trajectory, a larger CRAE was associated with lower odds of belonging to the early-chronic trajectory (OR: 0.83 [0.69-0.99]) and a lower flicker light-induced retinal dilation was associated with higher odds of belonging to the remitting trajectory (OR: 1.23 [1.07-1.43]). CONCLUSIONS: These findings support the hypothesis that cerebral microvascular dysfunction contributes to the development of depressive symptoms.

3.
Brain Commun ; 6(3): fcae171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846531

RESUMO

Life-course exposure to risk and protective factors impacts brain macro- and micro-structure, which in turn affects cognition. The concept of brain-age gap assesses brain health by comparing an individual's neuroimaging-based predicted age with their calendar age. A higher BAG implies accelerated brain ageing and is expected to be associated with worse cognition. In this study, we comprehensively modelled mutual associations between brain health and lifestyle factors, brain age and cognition in a large, middle-aged population. For this study, cognitive test scores, lifestyle and 3T MRI data for n = 4881 participants [mean age (± SD) = 59.2 (±8.6), 50.1% male] were available from The Maastricht Study, a population-based cohort study with extensive phenotyping. Whole-brain volumes (grey matter, cerebrospinal fluid and white matter hyperintensity), cerebral microbleeds and structural white matter connectivity were calculated. Lifestyle factors were combined into an adapted LIfestyle for BRAin health weighted sum score, with higher score indicating greater dementia risk. Cognition was calculated by averaging z-scores across three cognitive domains (memory, information processing speed and executive function and attention). Brain-age gap was calculated by comparing calendar age to predictions from a neuroimaging-based multivariable regression model. Paths between LIfestyle for BRAin health tertiles, brain-age gap and cognitive function were tested using linear regression and structural equation modelling, adjusting for sociodemographic and clinical confounders. The results show that cerebrospinal fluid, grey matter, white matter hyperintensity and cerebral microbleeds best predicted brain-age gap (R 2 = 0.455, root mean squared error = 6.44). In regression analysis, higher LIfestyle for BRAin health scores (greater dementia risk) were associated with higher brain-age gap (standardized regression coefficient ß = 0.126, P < 0.001) and worse cognition (ß = -0.046, P = 0.013), while higher brain-age gap was associated with worse cognition (ß=-0.163, P < 0.001). In mediation analysis, 24.7% of the total difference in cognition between the highest and lowest LIfestyle for BRAin health tertile was mediated by brain-age gap (ß indirect = -0.049, P < 0.001; ß total = -0.198, P < 0.001) and an additional 3.8% was mediated via connectivity (ß indirect = -0.006, P < 0.001; ß total = -0.150, P < 0.001). Findings suggest that associations between health- and lifestyle-based risk/protective factors (LIfestyle for BRAin health) and cognition can be partially explained by structural brain health markers (brain-age gap) and white matter connectivity markers. Lifestyle interventions targeted at high-risk individuals in mid-to-late life may be effective in promoting and preserving cognitive function in the general public.

4.
J Am Heart Assoc ; 13(3): e9112, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240213

RESUMO

BACKGROUND: Microvascular dysfunction is involved in the development of various cerebral disorders. It may contribute to these disorders by disrupting white matter tracts and altering brain connectivity, but evidence is scarce. We investigated the association between multiple biomarkers of microvascular function and whole-brain white matter connectivity. METHODS AND RESULTS: Cross-sectional data from The Maastricht Study, a Dutch population-based cohort (n=4326; age, 59.4±8.6 years; 49.7% women). Measures of microvascular function included urinary albumin excretion, central retinal arteriolar and venular calibers, composite scores of flicker light-induced retinal arteriolar and venular dilation, and plasma biomarkers of endothelial dysfunction (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and von Willebrand factor). White matter connectivity was calculated from 3T diffusion magnetic resonance imaging to quantify the number (average node degree) and organization (characteristic path length, global efficiency, clustering coefficient, and local efficiency) of white matter connections. A higher plasma biomarkers of endothelial dysfunction composite score was associated with a longer characteristic path length (ß per SD, 0.066 [95% CI, 0.017-0.114]) after adjustment for sociodemographic, lifestyle, and cardiovascular factors but not with any of the other white matter connectivity measures. After multiple comparison correction, this association was nonsignificant. None of the other microvascular function measures were associated with any of the connectivity measures. CONCLUSIONS: These findings suggest that microvascular dysfunction as measured by indirect markers is not associated with whole-brain white matter connectivity.


Assuntos
Substância Branca , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Substância Branca/patologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA