Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 595, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911434

RESUMO

BACKGROUND: Affordable high-throughput DNA and RNA sequencing technologies are allowing genomic analysis of plant and animal populations and as a result empowering new systems genetics approaches to study complex traits. The availability of intuitive tools to browse and analyze the resulting large-scale genetic and genomic datasets remain a significant challenge. Furthermore, these integrative genomics approaches require innovative methods to dissect the flow and interconnectedness of biological information underlying complex trait variation. The Plant Genome Integrative Explorer (PlantGenIE.org) is a multi-species database and domain that houses online tools for model and woody plant species including Eucalyptus. Since the Eucalyptus Genome Integrative Explorer (EucGenIE) is integrated within PlantGenIE, it shares genome and expression analysis tools previously implemented within the various subdomains (ConGenIE, PopGenIE and AtGenIE). Despite the success in setting up integrative genomics databases, online tools for systems genetics modelling and high-resolution dissection of complex trait variation in plant populations have been lacking. RESULTS: We have developed qtlXplorer ( https://eucgenie.org/QTLXplorer ) for visualizing and exploring systems genetics data from genome-wide association studies including quantitative trait loci (QTLs) and expression-based QTL (eQTL) associations. This module allows users to, for example, find co-located QTLs and eQTLs using an interactive version of Circos, or explore underlying genes using JBrowse. It provides users with a means to build systems genetics models and generate hypotheses from large-scale population genomics data. We also substantially upgraded the EucGenIE resource and show how it enables users to combine genomics and systems genetics approaches to discover candidate genes involved in biotic stress responses and wood formation by focusing on two multigene families, laccases and peroxidases. CONCLUSIONS: qtlXplorer adds a new dimension, population genomics, to the EucGenIE and PlantGenIE environment. The resource will be of interest to researchers and molecular breeders working in Eucalyptus and other woody plant species. It provides an example of how systems genetics data can be integrated with functional genetics data to provide biological insight and formulate hypotheses. Importantly, integration within PlantGenIE enables novel comparative genomics analyses to be performed from population-scale data.


Assuntos
Eucalyptus , Animais , Eucalyptus/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Humanos , Sistemas On-Line , Software
2.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24919147

RESUMO

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Assuntos
Eucalyptus/genética , Genoma de Planta , Eucalyptus/classificação , Evolução Molecular , Variação Genética , Endogamia , Filogenia
3.
Plant Biotechnol J ; 16(1): 124-136, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499078

RESUMO

Lateral Organ Boundaries Domain (LBD) proteins are plant-specific transcription factors playing crucial roles in growth and development. However, the function of LBD proteins in Eucalyptus grandis remains largely unexplored. In this study, LBD genes in E. grandis were identified and characterized using bioinformatics approaches. Gene expression patterns in various tissues and the transcriptional responses of EgLBDs to exogenous hormones were determined by qRT-PCR. Functions of the selected EgLBDs were studied by ectopically overexpressing in a hybrid poplar (Populus alba × Populus glandulosa). Expression levels of genes in the transgenic plants were investigated by RNA-seq. Our results showed that there were forty-six EgLBD members in the E. grandis genome and three EgLBDs displayed xylem- (EgLBD29) or phloem-preferential expression (EgLBD22 and EgLBD37). Confocal microscopy indicated that EgLBD22, EgLBD29 and EgLBD37 were localized to the nucleus. Furthermore, we found that EgLBD22, EgLBD29 and EgLBD37 were responsive to the treatments of indol-3-acetic acid and gibberellic acid. More importantly, we demonstrated EgLBDs exerted different influences on secondary growth. Namely, 35S::EgLBD37 led to significantly increased secondary xylem, 35S::EgLBD29 led to greatly increased phloem fibre production, and 35S::EgLBD22 showed no obvious effects. We revealed that key genes related to gibberellin, ethylene and auxin signalling pathway as well as cell expansion were significantly up- or down-regulated in transgenic plants. Our new findings suggest that LBD genes in E. grandis play important roles in secondary growth. This provides new mechanisms to increase wood or fibre production.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Biologia Computacional , Eucalyptus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento
4.
Sci Rep ; 7(1): 3370, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611454

RESUMO

Despite the considerable contribution of xylem development (xylogenesis) to plant biomass accumulation, its epigenetic regulation is poorly understood. Furthermore, the relative contributions of histone modifications to transcriptional regulation is not well studied in plants. We investigated the biological relevance of H3K4me3 and H3K27me3 in secondary xylem development using ChIP-seq and their association with transcript levels among other histone modifications in woody and herbaceous models. In developing secondary xylem of the woody model Eucalyptus grandis, H3K4me3 and H3K27me3 genomic spans were distinctly associated with xylogenesis-related processes, with (late) lignification pathways enriched for putative bivalent domains, but not early secondary cell wall polysaccharide deposition. H3K27me3-occupied genes, of which 753 (~31%) are novel targets, were enriched for transcriptional regulation and flower development and had significant preferential expression in roots. Linear regression models of the ChIP-seq profiles predicted ~50% of transcript abundance measured with strand-specific RNA-seq, confirmed in a parallel analysis in Arabidopsis where integration of seven additional histone modifications each contributed smaller proportions of unique information to the predictive models. This study uncovers the biological importance of histone modification antagonism and genomic span in xylogenesis and quantifies for the first time the relative correlations of histone modifications with transcript abundance in plants.


Assuntos
Arabidopsis/genética , Eucalyptus/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Proteínas de Plantas/genética , Xilema/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Epigênese Genética , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Genoma de Planta , Código das Histonas , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA