Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(31): 11401-6, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25024205

RESUMO

The mammalian vertebral column is highly variable, reflecting adaptations to a wide range of lifestyles, from burrowing in moles to flying in bats. However, in many taxa, the number of trunk vertebrae is surprisingly constant. We argue that this constancy results from strong selection against initial changes of these numbers in fast running and agile mammals, whereas such selection is weak in slower-running, sturdier mammals. The rationale is that changes of the number of trunk vertebrae require homeotic transformations from trunk into sacral vertebrae, or vice versa, and mutations toward such transformations generally produce transitional lumbosacral vertebrae that are incompletely fused to the sacrum. We hypothesize that such incomplete homeotic transformations impair flexibility of the lumbosacral joint and thereby threaten survival in species that depend on axial mobility for speed and agility. Such transformations will only marginally affect performance in slow, sturdy species, so that sufficient individuals with transitional vertebrae survive to allow eventual evolutionary changes of trunk vertebral numbers. We present data on fast and slow carnivores and artiodactyls and on slow afrotherians and monotremes that strongly support this hypothesis. The conclusion is that the selective constraints on the count of trunk vertebrae stem from a combination of developmental and biomechanical constraints.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Corrida/fisiologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Animais , Animais Domésticos , Fenômenos Biomecânicos , Tamanho Corporal , Endogamia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/fisiologia , Sacro/anatomia & histologia , Sacro/fisiologia , Especificidade da Espécie
2.
Zookeys ; 1155: 1-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059051

RESUMO

The non-passerine type specimens in Naturalis Biodiversity Center, Leiden are listed as an update to Van den Hoek Ostende et al. (1997) 'Type-specimens of birds in the National Museum of Natural History, Leiden, Part 1. Non-Passerines' and Roselaar and Prins (2000) 'List of type specimens of birds in the Zoological Museum of the University of Amsterdam (ZMA), including taxa described by ZMA staff but without types in the ZMA'. All new names published by Temminck and Schlegel are listed, even when types are not in Naturalis but in other collections. We have added 380 new names and deleted 13 names originally listed in Van den Hoek Ostende et al. (1997).

4.
Evodevo ; 2: 11, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548920

RESUMO

BACKGROUND: Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. RESULTS: We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. CONCLUSIONS: We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA