Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 43(12): 1623-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037492

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by dystrophin deficiency. Dystrophin is present intracellularly at the sarcolemma, connecting actin to the dystrophin-associated glycoprotein complex. Interestingly, it is enriched postsynaptically at the neuromuscular junction (NMJ), but its synaptic function is largely unknown. Utrophin, a dystrophin homologue, is also concentrated at the NMJ, and upregulated in DMD. It is possible that the absence of dystrophin at NMJs in DMD causes neuromuscular transmission defects that aggravate muscle weakness. We studied NMJ function in mdx mice (lacking dystrophin) and wild type mice. In addition, mdx/utrn(+/-) and mdx/utrn(-/-) mice (lacking utrophin) were used to investigate influences of utrophin levels. The three Duchenne mouse models showed muscle weakness when comparatively tested in vivo, with mdx/utrn(-/-) mice being weakest. Ex vivo muscle contraction and electrophysiological studies showed a reduced safety factor of neuromuscular transmission in all models. NMJs had ~ 40% smaller miniature endplate potential amplitudes compared with wild type, indicating postsynaptic sensitivity loss for the neurotransmitter acetylcholine. However, nerve stimulation-evoked endplate potential amplitudes were unchanged. Consequently, quantal content (i.e. the number of acetylcholine quanta released per nerve impulse) was considerably increased. Such a homeostatic compensatory increase in neurotransmitter release is also found at NMJs in myasthenia gravis, where autoantibodies reduce acetylcholine receptors. However, high-rate nerve stimulation induced exaggerated endplate potential rundown. Study of NMJ morphology showed that fragmentation of acetylcholine receptor clusters occurred in all models, being most severe in mdx/utrn(-/-) mice. Overall, we showed mild 'myasthenia-like' neuromuscular synaptic dysfunction in several Duchenne mouse models, which possibly affects muscle weakness and degeneration.


Assuntos
Modelos Animais de Doenças , Distrofia Muscular de Duchenne/fisiopatologia , Junção Neuromuscular/fisiopatologia , Transmissão Sináptica , Potenciais de Ação , Animais , Distrofina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Fadiga Muscular , Força Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Respiração , Utrofina/genética
2.
J Mol Cell Cardiol ; 69: 17-23, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486194

RESUMO

Duchenne muscular dystrophy is caused by mutations that prevent synthesis of functional dystrophin. All patients develop dilated cardiomyopathy. Promising therapeutic approaches are underway that successfully restore dystrophin expression in skeletal muscle. However, their efficiency in the heart is limited. Improved quality and function of only skeletal muscle potentially accelerate the development of cardiomyopathy. Our study aimed to elucidate which dystrophin levels in the heart are required to prevent or delay cardiomyopathy in mice. Heart function and pathology assessed with magnetic resonance imaging and histopathological analysis were compared between 2, 6 and 10-month-old female mdx-Xist(Δhs) mice, expressing low dystrophin levels (3-15%) in a mosaic manner based on skewed X-inactivation, dystrophin-negative mdx mice, and wild type mice of corresponding genetic backgrounds and gender. With age mdx mice developed dilated cardiomyopathy and hypertrophy, whereas the onset of heart pathology was delayed and function improved in mdx-Xist(Δhs) mice. The ejection fraction, the most severely affected parameter for both ventricles, correlated to dystrophin expression and the percentage of fibrosis. Fibrosis was partly reduced from 9.8% in mdx to 5.4% in 10 month old mdx-Xist(Δhs) mice. These data suggest that mosaic expression of 4-15% dystrophin in the heart is sufficient to delay the onset and ameliorate cardiomyopathy in mice.


Assuntos
Biomarcadores/metabolismo , Distrofina/fisiologia , Fibrose/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Distrofia Muscular Animal/complicações , Distrofia Muscular de Duchenne/complicações , Animais , Western Blotting , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia
3.
Neuromuscul Disord ; 28(5): 427-442, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631954

RESUMO

Dystrophin is a sub-sarcolemmal component of skeletal muscle fibres and is enriched at the postsynaptic membrane of the neuromuscular junction (NMJ). In the mdx mouse, dystrophin absence not only causes muscle damage but also mild synaptic dysfunctions and clear morphological aberrations at NMJs. In particular, reduction of postsynaptic sensitivity for the neurotransmitter acetylcholine and extra exhaustion of presynaptic acetylcholine release during intense synaptic activity exists. Current experimental therapeutic approaches in Duchenne muscular dystrophy aim to restore dystrophin expression. An important question is what dystrophin levels are needed to improve muscle function. Recent experimental and clinical studies suggested that levels as low as a few percent of normal can be beneficial. Similarly, it is of interest to know how dystrophin levels relate to NMJ function and morphology. We investigated NMJs of a series of mdx-XistΔhs mice, which expressed dystrophin between ~2% and 19% of normal. Most functional and morphological NMJ parameters of these mice remained comparable to mdx. On the other hand, mdx+/- mice (expressing ~50% dystrophin) showed normal NMJ features. Thus, the minimal dystrophin level required for normal NMJ function and morphology lies between 19% and 50% of normal when expression of dystrophin is not uniform.


Assuntos
Distrofina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Animais , Camundongos , Camundongos Endogâmicos mdx , Receptores Colinérgicos/metabolismo
4.
Brain Struct Funct ; 220(4): 1971-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744148

RESUMO

Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.


Assuntos
Atividade Motora/genética , Placa Motora/metabolismo , Junção Neuromuscular/citologia , Proteínas R-SNARE/deficiência , Transmissão Sináptica/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Biofísica , Diafragma/fisiologia , Estimulação Elétrica , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Desempenho Psicomotor/fisiologia , Proteínas R-SNARE/genética , Receptores Colinérgicos/metabolismo , Estatísticas não Paramétricas , Potenciais Sinápticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA