Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(37): 22645-22660, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106486

RESUMO

Dipolar electron paramagnetic resonance (EPR) experiments, such as double electron-electron resonance (DEER), measure distributions of nanometer-scale distances between unpaired electrons, which provide valuable information for structural characterization of proteins and other macromolecular systems. We present an extension to our previously published general model based on dipolar pathways valid for multi-dimensional dipolar EPR experiments with more than two spin-1/2 labels. We examine the 4-pulse DEER and TRIER experiments in terms of dipolar pathways and show experimental results confirming the theoretical predictions. This extension to the dipolar pathways model allows the analysis of previously challenging datasets and the extraction of multivariate distance distributions.


Assuntos
Proteínas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Substâncias Macromoleculares , Proteínas/química , Marcadores de Spin
2.
J Biol Chem ; 290(43): 26007-20, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26316535

RESUMO

The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the "Velcro" hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919-928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound.


Assuntos
Biopolímeros/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Complexo de Proteína do Fotossistema II/química , Modelos Moleculares , Conformação Proteica
3.
Phys Chem Chem Phys ; 15(16): 5854-66, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23487036

RESUMO

Distance measurements by pulse electron paramagnetic resonance techniques are increasingly applied to multiple-spin systems. In the double electron-electron resonance experiment, more than two dipolar coupled spins manifest in an increased total modulation depth and in sum and difference dipolar frequency contributions that give rise to additional peaks appearing in the distance distribution, which do not correspond to the real interspin distances of the system and are hence referred to as ghost contributions. These ghost contributions may be so prominent that they might be mistaken for real distance peaks or that real distance peaks shift their position or disappear. We present a simple approximate procedure to suppress ghost distances to a great extent by manipulating the experimentally obtained form factor during data analysis by a simple power scaling with a scaling exponent ζ(N) = 1/(1-N), with N being the number of coupled spins in the system. This approach requires neither further experimental effort nor exact knowledge about labelling and inversion efficiency. This should enable routine application to biological systems. The approach is validated on simulated test cases for up to five spins and applied to synthetic model samples. The suppression of ghost distances with the presented approach works best for symmetric geometries and rigid molecules which, at the same time, are the cases where ghost contributions are most disturbing. The distance distributions obtained by power scaling are consistent with distributions that were obtained with previously obtained alternative approaches and agree, in some cases, strikingly well with the expectations for the true interspin distance distributions.


Assuntos
Modelos Moleculares , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA