Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 17(12): 4279-4296, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30371095

RESUMO

The human genome encodes ∼20 mitochondrial proteases, yet we know little of how they sculpt the mitochondrial proteome, particularly during important mitochondrial events such as the initiation of apoptosis. To characterize global mitochondrial proteolysis we refined our technique, terminal amine isotopic labeling of substrates, for mitochondrial SILAC (MS-TAILS) to identify proteolysis across mitochondria and parent cells in parallel. Our MS-TAILS analyses identified 45% of the mitochondrial proteome and identified protein amino (N)-termini from 26% of mitochondrial proteins, the highest reported coverage of the human mitochondrial N-terminome. MS-TAILS revealed 97 previously unknown proteolytic sites. MS-TAILS also identified mitochondrial targeting sequence (MTS) removal by proteolysis during protein import, confirming 101 MTS sites and identifying 135 new MTS sites, revealing a wobbly requirement for the MTS cleavage motif. To examine the relatively unknown initial cleavage events occurring before the well-studied activation of caspase-3 in intrinsic apoptosis, we quantitatively compared N-terminomes of mitochondria and their parent cells before and after initiation of apoptosis at very early time points. By identifying altered levels of >400 N-termini, MS-TAILS analyses implicated specific mitochondrial pathways including protein import, fission, and iron homeostasis in apoptosis initiation. Notably, both staurosporine and Bax activator molecule-7 triggered in common 7 mitochondrial and 85 cellular cleavage events that are potentially part of an essential core of apoptosis-initiating events. All mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD009054.


Assuntos
Mitocôndrias/metabolismo , Proteólise , Sequência de Aminoácidos , Apoptose , Caspase 3/metabolismo , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Proteínas Mitocondriais/metabolismo , Proteômica/métodos
2.
Mol Ther ; 25(3): 606-620, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28253481

RESUMO

Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.


Assuntos
Rastreamento de Células/métodos , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Lentivirus/genética , Proteínas Luminescentes/genética , Diferenciação Celular , Códon , Citometria de Fluxo , Ordem dos Genes , Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Proteínas Luminescentes/metabolismo , MicroRNAs/genética , Reprodutibilidade dos Testes , Transdução Genética
3.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002329

RESUMO

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA/genética , Ligação Proteica , Fatores de Regulação Miogênica/metabolismo
4.
mSystems ; 5(3)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487743

RESUMO

Enteropathogenic Escherichia coli (EPEC) causes severe diarrheal disease and is present globally. EPEC virulence requires a bacterial type III secretion system to inject >20 effector proteins into human intestinal cells. Three effectors travel to mitochondria and modulate apoptosis; however, the mechanisms by which effectors control apoptosis from within mitochondria are unknown. To identify and quantify global changes in mitochondrial proteolysis during infection, we applied the mitochondrial terminal proteomics technique mitochondrial stable isotope labeling by amino acids in cell culture-terminal amine isotopic labeling of substrates (MS-TAILS). MS-TAILS identified 1,695 amino N-terminal peptides from 1,060 unique proteins and 390 N-terminal peptides from 215 mitochondrial proteins at a false discovery rate of 0.01. Infection modified 230 cellular and 40 mitochondrial proteins, generating 27 cleaved mitochondrial neo-N termini, demonstrating altered proteolytic processing within mitochondria. To distinguish proteolytic events specific to EPEC from those of canonical apoptosis, we compared mitochondrial changes during infection with those reported from chemically induced apoptosis. During infection, fewer than half of all mitochondrial cleavages were previously described for canonical apoptosis, and we identified nine mitochondrial proteolytic sites not previously reported, including several in proteins with an annotated role in apoptosis, although none occurred at canonical Asp-Glu-Val-Asp (DEVD) sites associated with caspase cleavage. The identification and quantification of novel neo-N termini evidences the involvement of noncaspase human or EPEC protease(s) resulting from mitochondrial-targeting effectors that modulate cell death upon infection. All proteomics data are available via ProteomeXchange with identifier PXD016994IMPORTANCE To our knowledge, this is the first study of the mitochondrial proteome or N-terminome during bacterial infection. Identified cleavage sites that had not been previously reported in the mitochondrial N-terminome and that were not generated in canonical apoptosis revealed a pathogen-specific strategy to control human cell apoptosis. These data inform new mechanisms of virulence factors targeting mitochondria and apoptosis during infection and highlight how enteropathogenic Escherichia coli (EPEC) manipulates human cell death pathways during infection, including candidate substrates of an EPEC protease within mitochondria. This understanding informs the development of new antivirulence strategies against the many human pathogens that target mitochondria during infection. Therefore, mitochondrial stable isotope labeling by amino acids in cell culture-terminal amine isotopic labeling of substrates (MS-TAILS) is useful for studying other pathogens targeting human cell compartments.

5.
Mol Ther Methods Clin Dev ; 6: 54-65, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28664166

RESUMO

Tracking the behavior of leukemic samples both in vitro and in vivo plays an increasingly large role in efforts to better understand the leukemogenic processes and the effects of potential new therapies. Such work can be accelerated and made more efficient by methodologies enabling the characterization of leukemia samples in multiplex assays. We recently developed three sets of lentiviral fluorescent genetic barcoding (FGB) vectors that create 26, 14, and 6 unique immunophenotyping-compatible color codes from GFP-, yellow fluorescent protein (YFP)-, and monomeric kusabira orange 2 (mKO2)-derived fluorescent proteins. These vectors allow for labeling and tracking of individual color-coded cell populations in mixed samples by real-time flow cytometry. Using the prototypical Hoxa9/Meis1 murine model of acute myeloid leukemia, we describe the application of the 6xFGB vector system for assessing leukemic cell characteristics in multiplex assays. By transplanting color-coded cell mixes, we investigated the competitive growth behavior of individual color-coded populations, determined leukemia-initiating cell frequencies, and assessed the dose-dependent potential of cells exposed to the histone deacetylase inhibitor Entinostat for bone marrow homing. Thus, FGB provides a useful tool for the multiplex characterization of leukemia samples in a wide variety of applications with a concomitant reduction in workload, processing times, and mouse utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA