RESUMO
Excitation functions A(N)(p(p),Theta(c.m.)) of the analyzing power in pp--> elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta p(p) between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30 degrees =Theta(c.m.)=90 degrees using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.
RESUMO
At the Cooler Synchrotron COSY/Jülich spin-correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A(NN), A(SS), and A(SL) for c.m. scattering angles between 30 degrees and 90 degrees. Our data on A(SS)--the first measurement of this observable above 800 MeV--clearly disagrees with predictions of available pp scattering phase-shift solutions while A(NN) and A(SL) are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.