Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 54(21): 13556-13565, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32966053

RESUMO

Dissolved organic matter plays an important role in aquatic ecosystems and poses a major problem for drinking water production. However, our understanding of DOM reactivity in natural systems is hampered by its complex molecular composition. Here, we used Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and data from two independent studies to disentangle DOM reactivity based on photochemical and microbial-induced transformations. Robust correlations of FT-ICR-MS peak intensities with chlorophyll a and solar irradiation were used to define 9 reactivity classes for 1277 common molecular formulas. Germany's largest drinking water reservoir was sampled for 1 year, and DOM processing in stratified surface waters could be attributed to photochemical transformations during summer months. Microbial DOM alterations could be distinguished based on correlation coefficients with chlorophyll a and often shared molecular features (elemental ratios and mass) with photoreactive compounds. In particular, many photoproducts and some microbial products were identified as potential precursors of disinfection byproducts. Molecular DOM features were used to further predict molecular reactivity for the remaining compounds in the data set based on a random forest model. Our method offers an expandable classification approach to integrate the reactivity of DOM from specific environments and link it to molecular properties and chemistry.


Assuntos
Água Potável , Ecossistema , Clorofila A , Água Doce , Aprendizado de Máquina
2.
J Phycol ; 54(5): 630-637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055056

RESUMO

Encrustation and element content of six charophyte species from two hard-water lakes were investigated monthly for a period of 1 year. Seasonal patterns were analyzed for the interaction of water chemistry. Encrustation followed a seasonal pattern for Chara contraria, Chara subspinosa, and Nitellopsis obtusa in Lake Krüselin and for Chara globularis and Chara tomentosa in Lake Lützlow. However, no seasonality in the precipitated CaCO3 was observed for C. subspinosa in Lake Lützlow and for C. tomentosa in Lake Krüselin, indicating a lake-specific dependency. Species-specific encrustation was found. Chara contraria and N. obtusa encrusted the most in June and August, whereas C. subspinosa and Nitella flexilis/opaca exhibited lowest encrustation in March and April. The precipitated CaCO3 of charophytes correlated negatively to the concentration of total inorganic carbon in both lakes. Element content of plant dry weight was species-specific for Ca and K, and lake-specific for Mg. No specific pattern was found for the TP and Fe contents. The results showed seasonal, species, and lake-specific influences on the encrustation of charophytes.


Assuntos
Biomassa , Chara/química , Chara/crescimento & desenvolvimento , Nitella/crescimento & desenvolvimento , Alemanha , Concentração de Íons de Hidrogênio , Lagos , Nitella/química , Estações do Ano , Especificidade da Espécie , Água/química
3.
Environ Monit Assess ; 189(8): 420, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755155

RESUMO

Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4+, NO2-, NO3-, PO43-), and selected major ions (SO42-) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Lagos , Metais Pesados/análise , Mineração , Mongólia , Federação Russa , Estações do Ano , Oligoelementos/análise , Águas Residuárias , Qualidade da Água
4.
Anal Bioanal Chem ; 408(10): 2461-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883969

RESUMO

Molecular formula assignment is one of the key challenges in processing high-field Fourier transform ion cyclotron resonance mass spectrometric (FT-ICR-MS) datasets. The number of potential solutions for an elemental formula increases exponentially with increasing molecular mass, especially when non-oxygen heteroatoms like N, S or P are included. A method was developed from the chemical perspective and validated using a Suwannee River Fulvic Acid (SRFA) dataset which is dominated by components consisting exclusively of C, H and O (78 % CHO). In order to get information on the application range and robustness of this method, we investigated a FT-ICR-MS dataset which was merged from 18 mine pit lake pore waters and 3 river floodplain soil waters. This dataset contained 50 % CHO and 18 % CHOS on average, whereas the former SRFA dataset contained only 1.5 % CHOS. The mass calculator was configured to allow up to five nitrogen atoms and up to one sulphur atom in assigning formulas to mass peaks. More than 50 % multiple-formula assignments were found for peaks with masses > 650 Da. Based on DBE - O frequency diagrams, many CHO, CHOS1, CHON1 and CHON1S1 molecular series were ultimately assigned to many m/z and considered to be reliable solutions. The unequivocal data pool could thus be enlarged by 523 (6.8 %) CHOS1 components. In contrast to the method validation with CHO-rich SRFA, validation with sulphur-rich pit lake samples showed that formulas with a higher number of non-oxygen heteroatoms can be more reliable assignments in many cases. As an example: CHOS molecular series were reliable and the CHO classes were unreliable amongst other molecular classes in many multiple-formula assignments from the sulphur-rich pit lake samples. Graphical abstract An exemplary frequency versus DBE - O diagram. CHOS components but not CHO (and not CHON2 or CHON2S) components were considered here reliable.

5.
Anal Bioanal Chem ; 406(30): 7977-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25358912

RESUMO

Formula assignment is one of the key challenges in evaluation of dissolved organic matter analyses using ultrahigh resolution mass spectrometry (FTICR MS). The number of possible solutions for elemental formulas grows exponentially with increasing nominal mass, especially when non-oxygen heteroatoms like N, S or P are considered. Until now, no definitive solution for finding the correct elemental formula has been given. For that reason an approach from the viewpoint of chemical feasibility was elucidated. To illustrate the new chemical formula assignment principle, a literature data set was used and evaluated by simplified chemical constraints. Only formulas containing a maximum of one sulphur and five nitrogen atoms were selected for further data processing. The resulting data table was then divided into mass peaks with unique component solutions (singlets, representing unequivocal formula assignments) and those with two or more solutions (multiple formula assignments, representing equivocal formula assignments). Based on a [double bond equivalent (DBE) versus the number of oxygen atoms (o)] frequency contour plot and a frequency versus [DBE minus o] diagram, a new assessment and decision strategy was developed to differentiate multiple formula assignments into chemically reliable and less reliable molecular formulas. Using this approach a considerable number of reliable components were identified within the equivocal part of the data set. As a control, a considerable proportion of the assigned formulas deemed to be reliable correspond to those which would have been obtained by CH 2 -based Kendrick mass defect analysis. We conclude that formula assignment in complex mixtures can be improved by group-wise decisions based on the frequency and the [DBE minus o] values of multiple formula assignments.


Assuntos
Misturas Complexas/análise , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Ciclotrons , Análise de Fourier
6.
Environ Monit Assess ; 185(5): 4333-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22983615

RESUMO

Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 µg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly <1 µg/kg) compared with those in Germany. At the most contaminated site, Spittelwasser brook (a tributary of the Mulde), extremely high concentrations were measured (up to 234 µg/kg α-HCH and 587 µg/kg ß-HCH in Hydropsychidae). In contrast, the Obríství site, though also influenced by HCH production facilities, showed only negligibly elevated values (mostly <1 µg/kg). Results showed that fairly high levels of α-HCH and ß-HCH compared to γ-HCH can still be detected in aquatic environments of the Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.


Assuntos
Monitoramento Ambiental , Hexaclorobenzeno/metabolismo , Invertebrados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cadeia Alimentar , Sedimentos Geológicos/química , Alemanha , Hexaclorobenzeno/análise , Hexaclorocicloexano/análise , Hexaclorocicloexano/metabolismo , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos
7.
Environ Monit Assess ; 185(11): 9221-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23780728

RESUMO

The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23% of total land cover) to agricultural (70%) and urbanised areas (7%). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44%) and season (15%), demonstrating the strong effect of land use on biogeochemical parameters.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Carbono/análise , Clorofila/análise , Clorofila A , Alemanha , Substâncias Húmicas/análise , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Estações do Ano
8.
Environ Pollut ; 335: 122293, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536481

RESUMO

Road traffic induced tire wear particles (TWP) attracted widespread attention due to their potential environmental impact. Here, the adsorption process of heavy metals like Pb2+ and Cd2+ on tire wear particles produced by filing (TWP-f) is studied to elucidate the underlying kinetics and thermodynamics. This work includes voltammetric experiments to investigate the concentration and temperature dependency of the adsorption. The adsorption kinetics in buffer solution spiked with heavy metals follows a pseudo-second-order rate equation involving rate-controlling boundary layer adsorption and a side-by-side intraparticle diffusion process. Meanwhile, the adsorption tendencies under the studied conditions for TWP-f were Pb2+ > Cd2+. The equilibrium adsorption data were modulated by the Langmuir, Freundlich, and Dubinin-Radushkevich (DR) isotherms. Both the Freundlich and DR isotherms were found to be feasible for describing the adsorption on TWP-f. The adsorption energy obtained from the DR isotherm is 1.6 kJ mol-1 for Pb2+ and 2 kJ mol-1 for Cd2+, indicating physisorption as the dominating force. According to the Freundlich isotherm, multilayer adsorption is proposed. The thermodynamic parameters show that the adsorption of Pb2+ and Cd2+ is endergonic. Due to small Gibbs enthalpy values near the thermodynamic equilibrium, the adsorption process is mainly dependent on the ambient conditions. So, close-to-nature experiments were conducted to verify the received results. Therefore, tire and road wear particles including road sediments (TRWP+RS) were added to prefiltered freshwater samples of the river Freiberger Mulde (having naturally elevated trace element concentrations). The adsorption kinetics were investigated by ICP-MS/MS emphasizing the pseudo-second-order rate equation. Moreover, it is suggested that the tire wear particles in the TRWP+RS sample are majorly responsible for the adsorption of at least Cd2+.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Adsorção , Chumbo , Espectrometria de Massas em Tandem , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
9.
Water Res ; 232: 119672, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739660

RESUMO

The molecular composition of dissolved organic matter (DOM) is of relevance for global carbon cycling and important for drinking water processing also. The detection of variation of DOM composition as function of time and space from a methodological viewpoint is essential to observe DOM processing and was addressed so far. High resolution concerning DOM quality was achieved with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). However almost none of the existing FTICR-MS data sets were evaluated addressing the fate of single mass features / molecular formulas (MFs) abundance during experiments. In contrast to former studies we analyze the function of MF abundance of time and space for such MFs which are present in all samples and which were formerly claimed as recalcitrant in not all but a great number of studies. For the first time the reactivity of MFs was directly compared by their abundance differences using a simple equation, the relative intensity difference (δRI). Search strategies to find out the maximum δRI values are introduced. The corresponding MFs will be regarded as key MFs (KEY-MFs). In order to test this new approach data from a recent photo degradation experiment were combined with monitoring surveys conducted in two drinking water reservoirs. The δRI values varied over one order of magnitude (more than five-fold). MFs like C9H12O6 and C10H14O6 revealed high biogeochemical reactivity as photo products. Some of the KEY-MFs were identical with MFs identified as disinfection byproducts precursors in recent studies. Other KEY-MFs were oxygen-rich and relatively unsaturated (poly-phenol-like) and hence relevant to flocculation procedures.


Assuntos
Matéria Orgânica Dissolvida , Água Potável , Espectrometria de Massas , Oxigênio , Fenóis
10.
Environ Toxicol Chem ; 42(9): 2007-2018, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36718721

RESUMO

The decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low-order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter. Studying the relationship between environmental variables and decomposition has mainly been realized using leaves, with the drawbacks of differing substrate composition and consequently between-study variability. To overcome these drawbacks, artificial substrates have been developed, serving as standardizable surrogates. In the present study, we compared microbial and total decomposition of leaves with the standardized substrates of decotabs and, only for microbial decomposition, of cotton strips, across 70 stream sites in a Germany-wide study. Furthermore, we identified the most influential environmental variables for the decomposition of each substrate from a range of 26 variables, including pesticide toxicity, concentrations of nutrients, and trace elements, using stability selection. The microbial as well as total decomposition of the standardized substrates (i.e., cotton strips and decotabs) were weak or not associated with that of the natural substrate (i.e., leaves, r² < 0.01 to r² = 0.04). The decomposition of the two standardized substrates, however, showed a moderate association (r² = 0.21), which is probably driven by their similar composition, with both being made of cellulose. Different environmental variables were identified as the most influential for each of the substrates and the directions of these relationships contrasted between the substrates. Our results imply that these standardized substrates are unsuitable surrogates when investigating the decomposition of allochthonous organic matter in streams. Environ Toxicol Chem 2023;42:2007-2018. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bactérias , Ecossistema , Fungos , Folhas de Planta , Alemanha
11.
Environ Sci Technol ; 46(10): 5511-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22524193

RESUMO

Elevated concentrations of dissolved organic matter (DOM) such as humic substances in raw water pose significant challenges during the processing of the commercial drinking water supplies. This is a relevant issue in Saxony, Central East Germany, and many other regions worldwide, where drinking water is produced from raw waters with noticeable presence of chromophoric DOM (CDOM), which is assumed to originate from forested watersheds in spring regions of the catchment area. For improved comprehension of DOM molecular composition, the seasonal and spatial variations of humic-like fluorescence and elemental formulas in the catchment area of the Muldenberg reservoir were recorded by excitation emission matrix fluorescence (EEMF) and ultrahigh-resolution mass spectrometry (FT-ICR-MS). The Spearman rank correlation was applied to link the EEMF intensities with exact molecular formulas and their corresponding relative mass peak abundances. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids, which are suspected to have a comparatively high disinfection byproduct formation potential associated with the chlorination of raw water. Analogous relationships were established for UV absorption at 254 nm (UV(254)) and dissolved organic carbon (DOC) and compared to the EEMF correlation.


Assuntos
Água Potável/química , Modelos Químicos , Compostos Orgânicos/análise , Espectrometria de Fluorescência/métodos , Movimentos da Água , Carbono/análise , Elementos Químicos , Alemanha , Substâncias Húmicas/análise , Rios/química , Estações do Ano , Solubilidade , Estatísticas não Paramétricas , Raios Ultravioleta
12.
Mar Pollut Bull ; 184: 114208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307946

RESUMO

The European Marine Strategy Framework Directive (MSFD) requires good ecological status of the marine environment. This also includes the Wadden Sea located in the southeastern part of the North Sea and its chemical status of sediments. Based on results from campaigns conducted in the 1980s, 32 surface sediment samples were taken in 2014 to check whether the sampling strategy required for characterizing the trace element content in sediments is representative and to determine the degree of pollution and potential changes over the last decades. For this purpose the elemental mass fractions of 42 elements were assessed in the ≤20 µm grain size fraction of the surface sediments. Based on cluster analysis a clear correlation between the element distribution and the geographical location of the sampling locations of the German Wadden Sea could be found. As a result of the principal component analysis, three sub-catchments were significantly separated from each other by the characteristic element distributions in the sediments (Norderney and Weser, Elbe and offshore areas, and North Friesland). With the help of discriminant analysis, the classification was confirmed unambiguously. Small anomalies, such as potentially contaminated sites from WWII, could be identified. This proved that the sampling strategy for sediment characterization with reference to trace elements in the Wadden Sea of the German Bight is representative. The impact of regulation and changes on the overall sediment quality is most evident when looking at the environmentally critical elements such as As, Cd, Hg, and Cr. For these elements the mean mass fractions show a significant reduction over the last three decades. Current sediments feature only slightly elevated mass fractions of Ag, Cd, Ce, Cs, Nd, Pb and Se at some sampling locations.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cádmio/análise , Mar do Norte , Metais Pesados/análise
13.
Sci Total Environ ; 828: 154243, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245548

RESUMO

On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are exposed to complex transport and transformation processes. However, detailed process knowledge as revealed by Lagrangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phytoplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll concentration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition experiments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.


Assuntos
Secas , Rios , Processos Autotróficos , Matéria Orgânica Dissolvida , Fitoplâncton
14.
Environ Pollut ; 286: 117328, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990052

RESUMO

Elevated levels of particulate matter (PM) in urban atmospheres are one of the major environmental challenges of the Anthropocene. To effectively lower those levels, identification and quantification of sources of PM is required. Biomonitoring methods are helpful tools to tackle this problem but have not been fully established yet. An example is the sampling and subsequent analysis of spider webs to whose adhesive surface dust particles can attach. For a methodical inspection, webs of orb-weaving spiders were sampled repeatedly from 2016 to 2018 at 22 locations in the city of Jena, Germany. Contents of Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Si, Sn, Sr, Th, Ti, V, Y, Zn and Zr were determined in the samples using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) after aqua regia digestion. Multivariate statistical methods were applied for a detailed evaluation. A combination of cluster analysis and principal component analysis allows for the clear identification of three main sources in the study area: brake wear from car traffic, abrasion of tram/train tracks and particles of geogenic origin. Quantitative source contributions reveal that high amounts of most of the metals are derived from a combination of brake wear and geogenic particles, the latter of which are likely resuspended by moving vehicles. This emphasizes the importance of non-exhaust particles connected to road traffic. Once a source identification has been performed for an area of interest, classification models can be applied to assess air quality for further samples from within the whole study area, offering a tool for air quality assessment. The general validity of this approach is demonstrated using samples from other locations.


Assuntos
Poluentes Atmosféricos , Aranhas , Oligoelementos , Poluentes Atmosféricos/análise , Animais , Monitoramento Biológico , Análise Custo-Benefício , Monitoramento Ambiental , Material Particulado/análise , Oligoelementos/análise
15.
Water Res ; 201: 117262, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118650

RESUMO

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Alemanha , Insetos , Invertebrados , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

17.
PLoS One ; 15(8): e0237836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841245

RESUMO

Lake Kivu, East Africa, is well known for its huge reservoir of dissolved methane (CH4) and carbon dioxide (CO2) in the stratified deep waters (below 250 m). The methane concentrations of up to ~ 20 mmol/l are sufficiently high for commercial gas extraction and power production. In view of the projected extraction capacity of up to several hundred MW in the next decades, reliable and accurate gas measurement techniques are required to closely monitor the evolution of gas concentrations. For this purpose, an intercomparison campaign for dissolved gas measurements was planned and conducted in March 2018. The applied measurement techniques included on-site mass spectrometry of continuously pumped sample water, gas chromatography of in-situ filled gas bags, an in-situ membrane inlet laser spectrometer sensor and a prototype sensor for total dissolved gas pressure (TDGP). We present the results of three datasets for CH4, two for CO2 and one for TDGP. The resulting methane profiles show a good agreement within a range of around 5-10% in the deep water. We also observe that TDGP measurements in the deep waters are systematically around 5 to 10% lower than TDGP computed from gas concentrations. Part of this difference may be attributed to the non-trivial conversion of concentration to partial pressure in gas-rich Lake Kivu. When comparing our data to past measurements, we cannot verify the previously suggested increase in methane concentrations since 1974. We therefore conclude that the methane and carbon dioxide concentrations in Lake Kivu are currently close to a steady state.


Assuntos
Gases/análise , Lagos/química , África Oriental , Dióxido de Carbono/análise , Metano/análise , Pressão , Risco
18.
Environ Sci Pollut Res Int ; 26(34): 34983-34992, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31664669

RESUMO

Mine drainage water from the Schlenze stream, Mansfeld Region, Central Germany, which have shown an increase in heavy metal concentrations of Cd2+, Cu2+, Pb2+, and Zn2+, was used to investigate the bioremediation potential of charophytes. The removal of heavy metals by Chara subspinosa from the water was tested in single- and multi-metal additions. The uptake capacity of C. subspinosa decreased during the course of the experiment and was higher in single-metal addition than in multi-metal addition of Pb2+, Zn2+, and Cd2+. Accumulation of heavy metals in the carbonate encrustation of charophytes was far lower than those to which they were exposed. Cu, Cd, Pb, and Zn co-precipitated more in the encrustation of C. subspinosa exposed to single-metal approach than to multi-metal approach. The carbonate composition of charophytes was influenced by the water chemistry. Content of Na in the carbonate encrustation correlated with the Na+ concentration of the respective water. The toxic effect of heavy metals on photosynthesis was species-specific. Electron transport rates (ETRmax) were higher in Chara tomentosa than in C. subspinosa. Charophytes withstand the heavy metal concentrations when diluted with river water from the Altarm cut-off lake and can therefore be used for the bioremediation of diluted mine drainage waters by co-precipitating Cd, Cu, and Zn.


Assuntos
Biodegradação Ambiental , Carofíceas , Poluentes Químicos da Água/metabolismo , Chara , Monitoramento Ambiental , Alemanha , Lagos , Metais Pesados/análise , Mineração , Rios , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
19.
Water Res ; 164: 114919, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382154

RESUMO

Fluvial networks are globally relevant for the processing of dissolved organic matter (DOM). To investigate the change in molecular DOM diversity along the river course, high-field FTICR mass spectrometry and NMR spectroscopy of riverine DOM as well as bacterial abundance and activity were measured in a third order stream along a land-use gradient from pristine, agricultural to urban landscapes. DOM composition showed a clear evolution along the river course with an initial decrease of average oxidation and unsaturation followed by an increased relative abundance of CHNO and CHOS compounds introduced by agriculture and waste water, respectively. DOM composition was dominated by rather unsaturated CHO compounds (H/C ≤ 1) in headwaters and by more aliphatic molecules at downstream sites. Oxygenated functional groups shifted from aromatic ethers and hydroxyl groups to aliphatic carboxylic acids and aliphatic hydroxyl groups. This massive dislocation of oxygen significantly increased the diversity of atomic environments in branched aliphatic groups from headwater to downstream DOM. Mass spectra of DOM enabled the detection of compositional relationships to bacterial abundance and activity which was positively related to more aliphatic components (H/C > 1) and negatively related to unsaturated components. FTICR mass and NMR spectra corroborated the initial decline in DOM molecular diversity predicted by the River Continuum Concept (RCC) but demonstrated an anthropogenic increase in the molecular diversity of DOM further downstream. While the high DOM molecular diversity in first order headwater streams was the result of small scale ecosystem plurality, agriculture and waste water treatment introduced many components in the lower reaches. These anthropogenic influences together with massive bacterial oxidation of DOM contributed to a growth of molecular diversity of downstream DOM whose composition and structure differed entirely from those found in pristine headwaters.


Assuntos
Ecossistema , Compostos Orgânicos , Agricultura , Bactérias , Rios
20.
Sci Total Environ ; 405(1-3): 215-25, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18675443

RESUMO

Since the efficacy of oseltamivir carboxylate (OC) as the active metabolite of Tamiflu has been demonstrated against influenza viruses and even against the avian influenza virus (H5N1), millions of Tamiflu treatment courses are stockpiled worldwide. This was done not at least to follow the recommendations of the World Health Organization (WHO) to cope with a viral influenza pandemic. Concentrations up to 26-32 microg l(-1) OC in river catchment areas in the United States and in the United Kingdom had been predicted recently for a pandemic case, assuming an apparent persistence of the Tamiflu metabolite. Such concentrations may involve the risk of generation of antiviral resistance. But there is still a lack of data concerning the stability of OC in a surface water environment. Under this aspect these predictions have to be validated with concrete facts about the environmental fate of OC. In this article we summarized the results of three different daylight exposure experiments with OC in different waters under sterile and non-sterile conditions simulating shallow water processes at the latitude of approximately 52 degrees N. Using a river water solution containing 50 microg l(-1) OC under non-sterile conditions a half-life time of 17.8 days was observed. Direct photolysis plays no or only a negligible role for the decomposition of OC. Degradation of OC seems to occur as a combination of microbial metabolism and indirect photolysis.


Assuntos
Antivirais/química , Oseltamivir/química , Poluentes Químicos da Água/química , Água/química , Antivirais/análise , Biodegradação Ambiental , Farmacorresistência Viral , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Oseltamivir/análise , Oseltamivir/efeitos da radiação , Fotólise , Rios/química , Rios/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA