Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38912733

RESUMO

In cell biology, ribosomal RNA (rRNA) 2'O-methyl (2'-O-Me) is the most prevalent post-transcriptional chemical modification contributing to ribosome heterogeneity. The modification involves a family of small nucleolar RNAs (snoRNAs) and is specified by box C/D snoRNAs (SNORDs). Given the importance of ribosome biogenesis for skeletal muscle growth, we asked if rRNA 2'-O-Me in nascent ribosomes synthesized in response to a growth stimulus is an unrecognized mode of ribosome heterogeneity in muscle. To determine the pattern and dynamics of 2'-O-Me rRNA, we used a sequencing-based profiling method called RiboMeth-seq. We applied this method to tissue-derived rRNA of skeletal muscle and rRNA specifically from the muscle fiber using an inducible myofiber-specific RiboTag mouse in sedentary and mechanically overloaded conditions. These analyses were complemented by myonuclear-specific small RNA sequencing to profile SNORDs and link the rRNA epitranscriptome to known regulatory elements generated within the muscle fiber. We demonstrate for the first time that mechanical overload of skeletal muscle 1) induces decreased 2'-O-Me at a subset of skeletal muscle rRNAand 2) alters the SNORD profile in isolated myonuclei. These findings point to a transient diversification of the ribosome pool via 2'-O-Me during growth and adaptation in skeletal muscle. These findings suggest changes in ribosome heterogeneity at the 2'-O-Me level during muscle hypertrophy and lay the foundation for studies investigating the functional implications of these newly identified "growth-induced" ribosomes.

2.
FASEB J ; 37(3): e22811, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786723

RESUMO

Cumulative evidence supports the hypothesis that hypoxia acts as a regulator of muscle mass. However, the underlying molecular mechanisms remain incompletely understood, particularly in human muscle. Here we examined the effect of hypoxia on signaling pathways related to ribosome biogenesis and myogenic activity following an acute bout of resistance exercise. We also investigated whether hypoxia influenced the satellite cell response to resistance exercise. Employing a randomized, crossover design, eight men performed resistance exercise in normoxia (FiO2 21%) or normobaric hypoxia (FiO2 12%). Muscle biopsies were collected in a time-course manner (before, 0, 90, 180 min and 24 h after exercise) and were analyzed with respect to cell signaling, gene expression and satellite cell content using immunoblotting, RT-qPCR and immunofluorescence, respectively. In normoxia, resistance exercise increased the phosphorylation of RPS6, TIF-1A and UBF above resting levels. Hypoxia reduced the phosphorylation of these targets by ~37%, ~43% and ~ 67% throughout the recovery period, respectively (p < .05 vs. normoxia). Resistance exercise also increased 45 S pre-rRNA expression and mRNA expression of c-Myc, Pol I and TAF-1A above resting levels, but no differences were observed between conditions. Similarly, resistance exercise increased mRNA expression of myogenic regulatory factors throughout the recovery period and Pax7+ cells were elevated 24 h following exercise in mixed and type II muscle fibers, with no differences observed between normoxia and hypoxia. In conclusion, acute hypoxia attenuates ribosome signaling, but does not impact satellite cell pool expansion and myogenic gene expression following a bout of resistance exercise in human skeletal muscle.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Masculino , Humanos , Treinamento Resistido/métodos , Músculo Esquelético/metabolismo , Ribossomos/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Células Satélites de Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo
3.
Exerc Sport Sci Rev ; 52(2): 63-67, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391187

RESUMO

Of the "Yamanaka factors" Oct3/4 , Sox2 , Klf4 , and c-Myc (OSKM), the transcription factor c-Myc ( Myc ) is the most responsive to exercise in skeletal muscle and is enriched within the muscle fiber. We hypothesize that the pulsatile induction of MYC protein after bouts of exercise can serve to epigenetically reprogram skeletal muscle toward a more resilient and functional state.


Assuntos
Reprogramação Celular , Epigênese Genética , Humanos , Músculo Esquelético
4.
Dev Med Child Neurol ; 66(7): 902-909, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38111130

RESUMO

AIM: The aim of this observational study was to determine the immune status and function in young adults with cerebral palsy (CP) in comparison to typically developing individuals. METHOD: Blood samples from 12 individuals with CP (five males, seven females; mean age: 25 years 1 month (5 years 9 months); age range: 19-38 years) and 17 typically developing individuals (eight males, nine females; mean age: 31 years 4 months (6 years 2 months); age range: 20-40 years) were collected before, immediately after, and 1 hour after 45 minutes of frame running or running respectively. Independent t-tests were used to compare heart rate, level of exertion, and baseline cell proportions between groups. Mixed model analysis of variance was utilized to investigate immune cell responses to exercise across groups. RESULTS: Baseline levels of gamma delta (TCRγδ+) T-cells were significantly higher (absolute percentage: +2.65, p = 0.028) in the individuals with CP. Several cell populations showed similar significant changes after exercise in both CP and typically developing groups. Cytotoxic (CD8+) T-cells were only significantly elevated immediately after exercise in the typically developing participants (p < 0.01). Individuals with CP exhibited significantly lower heart rates (-11.1%, p < 0.01), despite similar ratings of perceived exertion. INTERPRETATION: Elevated baseline TCRγδ+ T-cells may indicate low-grade inflammation in adults with CP. Although most of the cell populations showed typical responses to endurance exercise, the absence of response in CD8+ T-cells in individuals with CP may indicate the need for higher intensity during exercise. WHAT THIS PAPER ADDS: TCRγδ+ T-cell baseline levels are elevated in adults with cerebral palsy (CP). The CD8+ T-cell response to exercise was blunted in adults with CP. Exercise intensity is decisive for CD8+ T-cell responses in individuals with CP.


Assuntos
Paralisia Cerebral , Humanos , Masculino , Paralisia Cerebral/imunologia , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/sangue , Feminino , Adulto , Adulto Jovem , Exercício Físico/fisiologia , Resistência Física/fisiologia , Frequência Cardíaca/fisiologia , Descanso , Linfócitos T CD8-Positivos/imunologia
5.
Am J Physiol Cell Physiol ; 324(5): C1101-C1109, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971422

RESUMO

MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.


Assuntos
MicroRNAs , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteoma/genética , Proteômica , Transcriptoma/genética , Animais , Camundongos
6.
J Biol Chem ; 298(11): 102515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150502

RESUMO

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilação da Expressão Gênica
7.
Am J Physiol Cell Physiol ; 322(1): C86-C93, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817266

RESUMO

Muscle fibers are syncytial postmitotic cells that can acquire exogenous nuclei from resident muscle stem cells, called satellite cells. Myonuclei are added to muscle fibers by satellite cells during conditions such as load-induced hypertrophy. It is difficult to dissect the molecular contributions of resident versus satellite cell-derived myonuclei during adaptation due to the complexity of labeling distinct nuclear populations in multinuclear cells without label transference between nuclei. To sidestep this barrier, we used a genetic mouse model where myonuclear DNA can be specifically and stably labeled via nonconstitutive H2B-GFP at any point in the lifespan. Resident myonuclei (Mn) were GFP-tagged in vivo before 8 wk of progressive weighted wheel running (PoWeR) in adult mice (>4-mo-old). Resident + satellite cell-derived myonuclei (Mn+SC Mn) were labeled at the end of PoWeR in a separate cohort. Following myonuclear isolation, promoter DNA methylation profiles acquired with low-input reduced representation bisulfite sequencing (RRBS) were compared to deduce epigenetic contributions of satellite cell-derived myonuclei during adaptation. Resident myonuclear DNA has hypomethylated promoters in genes related to protein turnover, whereas the addition of satellite cell-derived myonuclei shifts myonuclear methylation profiles to favor transcription factor regulation and cell-cell signaling. By comparing myonucleus-specific methylation profiling to previously published single-nucleus transcriptional analysis in the absence (Mn) versus the presence of satellite cells (Mn+SC Mn) with PoWeR, we provide evidence that satellite cell-derived myonuclei may preferentially supply specific ribosomal proteins to growing myofibers and retain an epigenetic "memory" of prior stem cell identity. These data offer insights on distinct epigenetic myonuclear characteristics and contributions during adult muscle growth.


Assuntos
Adaptação Fisiológica/fisiologia , Núcleo Celular/metabolismo , Epigênese Genética/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal/fisiologia , Coloração e Rotulagem/métodos , Animais , Núcleo Celular/química , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/química , Condicionamento Físico Animal/métodos , Células Satélites de Músculo Esquelético/química , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Tempo
8.
FASEB J ; 35(6): e21644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033143

RESUMO

How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrß3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Exercício Físico , Vesículas Extracelulares/fisiologia , Lipólise , MicroRNAs/genética , Músculo Esquelético/fisiopatologia , Estresse Mecânico , Fator de Transcrição AP-2/metabolismo , Adolescente , Adulto , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição AP-2/genética , Adulto Jovem
9.
Pediatr Phys Ther ; 34(4): 529-534, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067377

RESUMO

PURPOSE: To determine the physiological response and association to peak oxygen uptake of the 6-minute Frame Running test (6-MFRT) in persons with cerebral palsy (CP). METHODS: Twenty-four participants with CP, Gross Motor Function Classification System II/III/IV, performed the 6-MFRT. Distance, peak heart rate (HR peak ), peak respiratory exchange ratio (RER peak ), and peak oxygen uptake ( O 2peak ) were measured. RESULTS: HR peak ranged from 146 to 201 beats per minute, RER peak from 0.94 to 1.49, 6-MFRT distance from 179 to 1220 m and O 2peak from 0.62 to 2.18 L/min. HR peak was achieved in 63%, RER peak in 71%. A strong correlation was observed between 6-MFRT and O 2peak . CONCLUSIONS: The 6-MFRT represented a (near) maximum effort for 75% of the participants and the 6-MFRT can be used to estimate oxygen consumption on an individual basis.


Assuntos
Paralisia Cerebral , Corrida , Adulto , Paralisia Cerebral/reabilitação , Criança , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Oxigênio , Consumo de Oxigênio/fisiologia
10.
J Physiol ; 599(13): 3363-3384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913170

RESUMO

KEY POINTS: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT: Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.


Assuntos
Epigênese Genética , Ribossomos , Animais , Humanos , Hipertrofia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
11.
Dev Med Child Neurol ; 63(10): 1204-1212, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34176131

RESUMO

AIM: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP). METHOD: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were analyzed with a focused query investigating metabolism- and mitochondria-related gene networks. RESULTS: The mtDNA to genomic DNA ratio was lower in the children with CP compared to the typically developing group (-23%, p=0.002). Out of five investigated complexes in the mitochondrial respiratory chain, we observed lower protein levels of all complexes (I, III, IV, V, -20% to -37%; p<0.05) except complex II. Total peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) messenger RNA (p<0.004), isoforms PGC1α1 (p=0.05), and PGC1α4 (p<0.001) were reduced in CP. Transcriptional similarities were observed between CP, aging, and 90 days' bed rest. INTERPRETATION: Mitochondrial biogenesis, mtDNA, and oxidative phosphorylation protein content are reduced in CP muscle compared with typically developing muscle. Transcriptional pathways shared between aging and long-term unloading suggests metabolic dysregulation in CP, which may guide therapeutic strategies for combatting CP muscle pathology. What this paper adds Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. Gene expression in CP muscle is similar to aging and long-term bed rest.


Assuntos
Paralisia Cerebral/genética , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Músculo Esquelético/metabolismo , Adolescente , Estudos de Casos e Controles , Paralisia Cerebral/metabolismo , Criança , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
12.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R50-R58, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432913

RESUMO

The current study explored whether the marked hypertrophic response noted with a short-term unilateral concurrent exercise paradigm was associated with more prominent changes in myonuclei accretion, ribosome biogenesis, and capillarization compared with resistance exercise alone (RE). Ten men (age 25 ± 4 yr) performed aerobic and resistance exercise (AE + RE) for one leg while the other leg did RE. Muscle biopsies were obtained before and after 5 wk of training and subjected to fiber-type specific immunohistochemical analysis, and quantification of total RNA content and mRNA/rRNA transcript abundance. Type II fiber cross-sectional area (CSA) increased with both AE + RE (22%) and RE (16%), while type I fiber CSA increased mainly with AE + RE (16%). The change score tended to differ between legs for type I CSA (P = 0.099), and the increase in smallest fiber diameter was greater in AE + RE than RE (P = 0.029). The number of nuclei per fiber increased after AE + RE in both fiber types, and this increase was greater (P = 0.027) than after RE. A strong correlation was observed between changes in number of nuclei per fiber and fiber CSA in both fiber types, for both AE + RE and RE (r > 0.8, P < 0.004). RNA content increased after AE + RE (24%, P = 0.019), but the change-scores did not differ across legs. The capillary variables generally increased in both fiber types, with no difference across legs. In conclusion, the accentuated hypertrophic response to AE + RE was associated with more pronounced myonuclear accretion, which was strongly correlated with the degree of fiber hypertrophy. This suggests that myonuclear accretion could play a role in facilitating muscle hypertrophy also during very short training periods.


Assuntos
Núcleo Celular/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adulto , Capilares/fisiologia , Humanos , Hipertrofia , Perna (Membro)/anatomia & histologia , Perna (Membro)/fisiologia , Imageamento por Ressonância Magnética , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Rápida/ultraestrutura , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Lenta/ultraestrutura , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/ultraestrutura , Resistência Física , RNA/biossíntese , Treinamento Resistido , Ribossomos/metabolismo , Adulto Jovem
13.
J Muscle Res Cell Motil ; 41(2-3): 211-219, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32221759

RESUMO

Muscle contracture development is a major complication for individuals with cerebral palsy (CP) and has lifelong implications. In order to recognize contracture development early and to follow up on preventive interventions aimed at muscle health development, non-invasive, and easy to use methods are needed. The aim of the present study was to assess whether multi-frequency Bioimpedance (mfBIA) can be used to detect differences between skeletal muscle of individuals with CP and healthy controls. The mfBIA technique was applied to the medial gastrocnemius muscle of n = 24 adults with CP and n = 20 healthy controls of both genders. The phase angle (PA) and the centre frequency (fc) were significantly lower in individuals with CP when compared to controls; PA: - 25% for women and - 31.8% for men (P < 0.0001); fc: - 5.6% for women and - 5.2% for men (P < 0.009). The reactance (Xc) and the extracellular resistance (Re) of skeletal muscle from individuals with CP were significantly higher when compared to controls; Xc: + 9.9% for women and + 28.9% for men (P < 0.0001); Re: + 39.7% for women and + 91.2% for men (P < 0.0001). The present study shows that several mfBIA parameters differ significantly between individuals with CP and healthy controls. Furthermore, these changes correlated significantly with the severity of CP, as assessed using the GMFCS scale. The present data indicate that mfBIA shows promise in terms of being a useful diagnostic tool, capable of characterizing muscle health and its development in individuals with cerebral palsy.


Assuntos
Paralisia Cerebral/diagnóstico , Contratura/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Feminino , Humanos , Masculino
14.
BMC Musculoskelet Disord ; 21(1): 193, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220246

RESUMO

BACKGROUND: Individuals with cerebral palsy (CP) are less physically active, spend more time sedentary and have lower cardiorespiratory endurance as compared to typically developed individuals. RaceRunning enables high-intensity exercise in individuals with CP with limited or no walking ability, using a three-wheeled running bike with a saddle and a chest plate for support, but no pedals. Training adaptations using this type of exercise are unknown. METHODS: Fifteen adolescents/young adults (mean age 16, range 9-29, 7 females/8 males) with CP completed 12 weeks, two sessions/week, of RaceRunning training. Measurements of cardiorespiratory endurance (6-min RaceRunning test (6-MRT), average and maximum heart rate, rate of perceived exertion using the Borg scale (Borg-RPE)), skeletal muscle thickness (ultrasound) of the thigh (vastus lateralis and intermedius muscles) and lower leg (medial gastrocnemius muscle) and passive range of motion (pROM) of hip, knee and ankle were collected before and after the training period. RESULTS: Cardiorespiratory endurance increased on average 34% (6-MRT distance; pre 576 ± 320 m vs. post 723 ± 368 m, p < 0.001). Average and maximum heart rate and Borg-RPE during the 6-MRT did not differ pre vs. post training. Thickness of the medial gastrocnemius muscle increased 9% in response to training (p < 0.05) on the more-affected side. Passive hip flexion increased (p < 0.05) on the less-affected side and ankle dorsiflexion decreased (p < 0.05) on the more affected side after 12 weeks of RaceRunning training. CONCLUSIONS: These results support the efficacy of RaceRunning as a powerful and effective training modality in individuals with CP, promoting both cardiorespiratory and peripheral adaptations.


Assuntos
Aptidão Cardiorrespiratória/fisiologia , Paralisia Cerebral/reabilitação , Treino Aeróbico/métodos , Músculo Esquelético/fisiopatologia , Resistência Física/fisiologia , Adolescente , Adulto , Articulação do Tornozelo/fisiopatologia , Paralisia Cerebral/fisiopatologia , Criança , Feminino , Articulação do Quadril/fisiopatologia , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Amplitude de Movimento Articular/fisiologia , Corrida/fisiologia , Comportamento Sedentário , Resultado do Tratamento , Adulto Jovem
15.
Am J Physiol Renal Physiol ; 317(5): F1122-F1131, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432706

RESUMO

Advanced chronic kidney disease (CKD) is characterized by a premature aging phenotype of multifactorial origin. Mitochondrial dysfunction is prevalent in CKD and has been proposed as a major contributor to poor muscle function. Although the mitochondria-derived peptides (MDPs) humanin and mitochondrial open reading frame of 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis, and glucose control, the implications of MDP in CKD are unknown. We investigated humanin and MOTS-c protein expression in skeletal muscle and serum levels in CKD at stage 5 (glomerular filtration rate: <15 ml/min) patients and age-matched controls with normal renal function. Whereas circulating levels of humanin were increased in CKD, local muscle expression was reduced. In contrast, MOTS-c levels were reduced in both skeletal muscle and serum in CKD. Humanin in serum correlated positively to circulating TNF levels. Reduced MDP levels in skeletal muscle were associated with lower mitochondrial density and evidence of oxidative stress. These results indicate a differential regulation of MDPs in CKD and suggest an alternative site for humanin production than skeletal muscle in the uremic milieu. MDP levels were linked to systemic inflammation and evidence of oxidative stress in the muscle, two hallmark features of premature aging and uremia.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/metabolismo , Adulto , Idoso , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Fator 2 Relacionado a NF-E2/genética , Adulto Jovem
16.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R83-R92, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969843

RESUMO

The current study examined the effects of a preceding bout of aerobic exercise (AE) on subsequent molecular signaling to resistance exercise (RE) of the elbow extensors. Eleven men performed unilateral elbow-extensor AE (~45 min at 70% peak workload) followed by unilateral RE (4 × 7 maximal repetitions) for both arms. Thus, one arm performed AE+RE interspersed with 15 min recovery, whereas the other arm conducted RE alone. Muscle biopsies were taken from the triceps brachii of each arm immediately before (PRE) and 15 min (POST1) and 3 h (POST2) after RE. Molecular markers involved in translation initiation, protein breakdown, mechanosignaling, and ribosome biogenesis were analyzed. Peak power during RE was reduced by 24% (±19%) when preceded by AE (P < 0.05). Increases in PGC1a and MuRF1 expression were greater from PRE to POST2 in AE+RE compared with RE (18- vs. 3.5- and 4- vs. 2-fold, respectively, interaction, P < 0.05). Myostatin mRNA decreased in both arms (P < 0.05). Phosphorylation of AMPK (Thr172) increased (2.5-fold), and 4E-BP1 (Thr37/46) decreased (2.0-fold), after AE (interactions, P < 0.05). p70 S6K, yes-associated protein, and c-Jun NH2-terminal kinase phosphorylation were unaltered, whereas focal adhesion kinase decreased ~1.5-fold, and ß1-integrin increased ~1.3- to 1.5-fold, (time effect, P < 0.05). Abundance of 45S pre-ribosomal (r)RNA (internally transcribed spacer, ITS) decreased (~30%) after AE (interaction, P < 0.05), whereas CMYC mRNA was greater in AE+RE compared with RE (12-fold, P < 0.05). POLR1B abundance increased after both AE+RE and RE. All together, our results suggest that a single bout of AE leads to an immediate decrease in signaling for translation initiation and ribosome biogenesis. Yet, this did not translate into altered RE-induced signaling during the 3-h postexercise recovery period.


Assuntos
Cotovelo/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Transdução de Sinais/fisiologia , Adulto , Regulação da Expressão Gênica , Humanos , Masculino , Fosforilação , Adulto Jovem
17.
Eur J Clin Invest ; 48(11): e13020, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144313

RESUMO

Chronic kidney disease (CKD), which affects 10%-15% of the population, associates with a range of complications-such as cardiovascular disease, frailty, infections, muscle and bone disorders and premature ageing-that could be related to alterations of mitochondrial number, distribution, structure and function. As mitochondrial biogenesis, bioenergetics and the dynamic mitochondrial networks directly or indirectly regulate numerous intra- and extracellular functions, the mitochondria have emerged as an important target for interventions aiming at preventing or improving the treatment of complications in CKD. In this review, we discuss the possible role of bioactive food compounds and exercise in the modulation of the disturbed mitochondrial function in a uraemic milieu.


Assuntos
Fatores Biológicos/uso terapêutico , Terapia por Exercício , Doenças Mitocondriais/prevenção & controle , Insuficiência Renal Crônica/etiologia , Dieta , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/fisiologia , Estresse Oxidativo/fisiologia , Compostos Fitoquímicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Uremia/prevenção & controle
18.
Muscle Nerve ; 58(2): 277-285, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29572878

RESUMO

INTRODUCTION: Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested. METHODS: The biceps muscles of children and adolescents with CP/ABI (n = 20) and typically developing controls (n = 10) were investigated. We used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting to assess gene expression relevant to growth and size homeostasis. RESULTS: Classical pro-inflammatory cytokines and genes involved in extracellular matrix (ECM) production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase I transcription factors, 45s pre-rRNA and 28S rRNA. DISCUSSION: The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures, possibly underlying stunted growth and perimysial ECM expansion. Muscle Nerve 58: 277-285, 2018.


Assuntos
Lesões Encefálicas/patologia , Paralisia Cerebral/patologia , Matriz Extracelular/patologia , Músculo Esquelético/patologia , RNA Ribossômico/biossíntese , Adolescente , Contagem de Células , Criança , Colágeno/metabolismo , Citocinas/biossíntese , Citocinas/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Fibras Musculares Esqueléticas/patologia , RNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Ribossomos/genética , Ribossomos/patologia , Células Satélites de Músculo Esquelético/patologia
19.
Am J Physiol Cell Physiol ; 311(4): C663-C672, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581648

RESUMO

Ribosome production is an early event during skeletal muscle hypertrophy and precedes muscle protein accretion. Signaling via mTOR is crucial for ribosome production and hypertrophy; however, the mechanisms by which it regulates these processes remain to be identified. Herein, we investigated the activation of mTOR signaling in hypertrophying myotubes and determined that mTOR coordinates various aspects of gene expression important for ribosome production. First, inhibition of translation with cycloheximide had a more potent effect on protein synthesis than rapamycin indicating that mTOR function during hypertrophy is not on general, but rather on specific protein synthesis. Second, blocking Pol II transcription had a similar effect as Rapamycin and, unexpectedly, revealed the necessity of Pol II transcription for Pol I transcription, suggesting that mTOR may regulate ribosome production also by controlling Class II genes at the transcriptional level. Third, Pol I activity is essential for rDNA transcription and, surprisingly, for protein synthesis as selective Pol I inhibition blunted rDNA transcription, protein synthesis, and the hypertrophic response of myotubes. Finally, mTOR has nuclear localization in muscle, which is not sensitive to rapamycin. Inhibition of mTOR signaling by rapamycin disrupted mTOR-rDNA promoter interaction and resulted in altered histone marks indicative of repressed transcription and formation of higher-order chromatin structure. Thus mTOR signaling appears to regulate muscle hypertrophy by affecting protein synthesis, Class I and II gene expression, and chromatin remodeling.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Ribossômico/genética , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Transcrição Gênica/genética , Animais , Linhagem Celular Tumoral , Hipertrofia/genética , Camundongos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Regiões Promotoras Genéticas/genética , Ribossomos/genética
20.
Nephrol Dial Transplant ; 31(7): 1070-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25910496

RESUMO

Muscle wasting (or sarcopenia) is a common feature of the uremic phenotype and predisposes this vulnerable patient population to increased risk of comorbid complications, poor quality of life, frailty and premature death. The old age of dialysis patients is in addition a likely contributor to loss of muscle mass. As recent evidence suggests that assessment of muscle strength (i.e. function) is a better predictor of outcome and comorbidities than muscle mass, this opens new screening, assessment and therapeutic opportunities. Among established treatment strategies, the benefit of resistance exercise and endurance training are increasingly recognized among nephrologists as being effective and should be promoted in sedentary chronic kidney disease patients. Testosterone and growth hormone replacement appear as the most promising among emerging treatments strategies for muscle wasting. As treatment of muscle wasting is difficult and seldom successful in this often old, frail, sedentary and exercise-hesitant patient group, novel treatment strategies are urgently needed. In this review, we summarize recent studies on stimulation of mitochondrial biogenesis, myogenic stem (satellite) cells and manipulation of transforming growth factor family members, all of which hold promise for more effective therapies to target muscle mass loss and function in the future.


Assuntos
Falência Renal Crônica/complicações , Mortalidade Prematura , Síndrome de Emaciação/terapia , Humanos , Síndrome de Emaciação/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA