Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916944

RESUMO

Aminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA. Despite considerable progress made over the last few years, still little is known how the bulk of cytosolic AaRS and respective tRNAs are transported into mitochondria. Here, we report the identification of a protein complex that ties AaRS and tRNA import into the mitochondria of Arabidopsis thaliana. Using leucyl-tRNA synthetase 2 (LeuRS2) as a model for a mitochondrial signal peptide (MSP)-less precursor, a ≈30 kDa protein was identified that interacts with LeuRS2 during import. The protein identified is identical with a previously characterized mitochondrial protein designated HP30-2 (encoded by At3g49560) that contains a sterile alpha motif (SAM) similar to that found in RNA binding proteins. HP30-2 is part of a larger protein complex that contains with TIM22, TIM8, TIM9 and TIM10 four previously identified components of the translocase for MSP-less precursors. Lack of HP30-2 perturbed mitochondrial biogenesis and function and caused seedling lethality during greening, suggesting an essential role of HP30-2 in planta.


Assuntos
Arabidopsis/fisiologia , Leucina-tRNA Ligase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA de Transferência/genética , Transporte Biológico , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Biogênese de Organelas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , RNA de Transferência/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(9): 2212-2217, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28179567

RESUMO

Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação à Clorofila/genética , Cisteína Proteases/genética , Regulação da Expressão Gênica de Plantas , Plântula/genética , Serpinas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Ligação à Clorofila/química , Proteínas de Ligação à Clorofila/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Modelos Moleculares , Imunidade Vegetal/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/metabolismo , Serpinas/química , Serpinas/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Plant J ; 93(5): 894-904, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315949

RESUMO

Phosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogens Puccinia emaculata and Phakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth of P. emaculata, P. pachyrhizi and several other fungal pathogens tested. To understand these Phi-mediated effects, a detailed molecular analysis was undertaken in both the host and the pathogen. Transcriptomic studies in switchgrass revealed that Phi activates plant defense signaling as early as 1 h after application by increasing the expression of several cytoplasmic and membrane receptor-like kinases and defense-related genes within 24 h of application. Unlike in oomycetes, RNA sequencing of P. emaculata and P. pachyrhizi did not exhibit Phi-mediated retardation of cell wall biosynthesis. The genes with reduced expression in either or both rust fungi belonged to functional categories such as ribosomal protein, actin, RNA-dependent RNA polymerase, and aldehyde dehydrogenase. A few P. emaculata genes that had reduced expression upon Phi treatment were further characterized. Application of double-stranded RNAs specific to P. emaculata genes encoding glutamate N-acetyltransferase and cystathionine gamma-synthase to switchgrass leaves resulted in reduced disease severity upon P. emaculata inoculation, suggesting their role in pathogen survival and/or pathogenesis.


Assuntos
Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Panicum/microbiologia , Fosfitos/farmacologia , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Resistência à Doença , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Panicum/efeitos dos fármacos , Panicum/metabolismo , Phakopsora pachyrhizi/efeitos dos fármacos , Phakopsora pachyrhizi/genética , Phakopsora pachyrhizi/patogenicidade , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/microbiologia
4.
Funct Integr Genomics ; 19(1): 123-136, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30159724

RESUMO

Ubiquitous nature of prolamin proteins dubbed gluten from wheat and allied cereals imposes a major challenge in the treatment of celiac disease, an autoimmune disorder with no known treatment other than abstinence diet. Administration of hydrolytic glutenases as food supplement is an alternative to deliver the therapeutic agents directly to the small intestine, where sensitization of immune system and downstream reactions take place. The aim of the present research was to evaluate the capacity of wheat grain to express and store hydrolytic enzymes capable of gluten detoxification. For this purpose, wheat scutellar calli were biolistically transformed to generate plants expressing a combination of glutenase genes for prolamin detoxification. Digestion of prolamins with barley endoprotease B2 (EP-HvB2) combined with Flavobacterium meningosepticum prolyl endopeptidase (PE-FmPep) or Pyrococcus furiosus prolyl endopeptidase (PE-PfuPep) significantly reduced (up to 67%) the amount of the indigestible gluten peptides of all prolamin families tested. Seven of the 168 generated lines showed inheritance of transgene to the T2 generation. Reversed phase high-performance liquid chromatography of gluten extracts under simulated gastrointestinal conditions allowed the identification of five T2 lines that contained significantly reduced amounts of immunogenic, celiac disease-provoking gliadin peptides. These findings were complemented by the R5 ELISA test results where up to 72% reduction was observed in the content of immunogenic peptides. The developed wheat genotypes open new horizons for treating celiac disease by an intraluminal enzyme therapy without compromising their agronomical performance.


Assuntos
Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Glutens/metabolismo , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Biolística , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Chryseobacterium/enzimologia , Chryseobacterium/genética , Expressão Gênica , Engenharia Genética/métodos , Gliadina/imunologia , Gliadina/isolamento & purificação , Gliadina/metabolismo , Gliadina/farmacologia , Glutens/química , Glutens/imunologia , Hordeum/enzimologia , Hordeum/genética , Humanos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteólise , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Transgenes , Triticum/enzimologia
5.
J Exp Bot ; 70(5): 1483-1495, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30690555

RESUMO

Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Oxilipinas/metabolismo , Plastídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(12): 3383-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26969728

RESUMO

Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.


Assuntos
Cloroplastos/enzimologia , Lipoxigenase/metabolismo , Folhas de Planta/citologia , Folhas de Planta/enzimologia
7.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234561

RESUMO

The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2-AOS-AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests.


Assuntos
Aldeído Liases/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença , Oxirredutases Intramoleculares/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Resistência à Doença/genética , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Redes e Vias Metabólicas , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Ligação Proteica , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 112(18): 5838-43, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901327

RESUMO

Tetrapyrroles such as chlorophyll, heme, and bacteriochlorophyll play fundamental roles in the energy absorption and transduction of all photosynthetic organisms. They are synthesized via a complex pathway taking place in chloroplasts. Chlorophyll biosynthesis in angiosperms involves 16 steps of which only one is light-requiring and driven by the NADPH:protochlorophyllide oxidoreductase (POR). Three POR isoforms have been identified in Arabidopsis thaliana--designated PORA, PORB, and PORC--that are differentially expressed in etiolated, light-exposed, and light-adapted plants. All three isoforms are encoded by nuclear genes, are synthesized as larger precursors in the cytosol (pPORs), and are imported posttranslationally into the plastid compartment. Import of the precursor to the dark-specific isoform PORA (pPORA) is protochlorophyllide (Pchlide)-dependent and due to the operation of a unique translocon complex dubbed PTC (Pchlide-dependent translocon complex) in the plastid envelope. Here, we identified a ∼30-kDa protein that participates in pPORA import. The ∼30-kDa protein is identical to the previously identified CELL GROWTH DEFECT FACTOR 1 (CDF1) in Arabidopsis that is conserved in higher plants and Synechocystis. CDF1 operates in pPORA import and stabilization and hereby acts as a chaperone for PORA protein translocation. CDF1 permits tight interactions between Pchlide synthesized in the plastid envelope and the importing PORA polypeptide chain such that no photoexcitative damage occurs through the generation of singlet oxygen operating as a cell death inducer. Together, our results identify an ancient mechanism dating back to the endosymbiotic origin of chloroplasts as a key element of Pchlide-dependent pPORA import.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Proteínas de Transporte/fisiologia , Clorofila/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Oxigênio/química , Fenótipo , Fotossíntese , Pigmentação , Plastídeos/metabolismo , Ligação Proteica , Transporte Proteico , Protoclorifilida/metabolismo , Sementes/metabolismo , Oxigênio Singlete/química , Espectrometria de Fluorescência , Synechocystis/metabolismo , Temperatura
9.
Proc Natl Acad Sci U S A ; 112(23): 7303-8, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26016527

RESUMO

Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Ligação à Clorofila/fisiologia , Herbivoria , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Cisteína Proteases/metabolismo , Estiolamento , Técnicas de Silenciamento de Genes , Hipocótilo/crescimento & desenvolvimento
10.
Plant Mol Biol ; 94(1-2): 45-59, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28260138

RESUMO

NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Arabidopsis/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
11.
Proc Natl Acad Sci U S A ; 111(39): 14187-92, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25232038

RESUMO

Although studied extensively since 1958, the molecular mode of action of the Pairing homeologous 1 (Ph1) gene is still unknown. In polyploid wheat, the diploid-like chromosome pairing is principally controlled by the Ph1 gene via preventing homeologous chromosome pairing (HECP). Here, we report a candidate Ph1 gene (C-Ph1) present in the Ph1 locus, transient as well as stable silencing of which resulted in a phenotype characteristic of the Ph1 gene mutants, including HECP, multivalent formation, and disrupted chromosome alignment on the metaphase I (MI) plate. Despite a highly conserved DNA sequence, the C-Ph1 gene homeologues showed a dramatically different structure and expression pattern, with only the 5B copy showing MI-specific expression, further supporting our claim for the Ph1 gene. In agreement with the previous reports about the Ph1 gene, the predicted protein of the 5A copy of the C-Ph1 gene is truncated, and thus perhaps less effective. The 5D copy is expressed around the onset of meiosis; thus, it may function during the earlier stages of chromosome pairing. Along with alternate splicing, the predicted protein of the 5B copy is different from the protein of the other two copies because of an insertion. These structural and expression differences among the homeologues concurred with the previous observations about Ph1 gene function. Stable RNAi silencing of the wheat gene in Arabidopsis showed multivalents and centromere clustering during meiosis I.


Assuntos
Pareamento Cromossômico/genética , Genes de Plantas , Triticum/genética , Processamento Alternativo , Arabidopsis/genética , Sequência de Bases , Cromossomos de Plantas/genética , Sequência Conservada , DNA de Plantas/genética , Diploide , Deleção de Genes , Inativação Gênica , Metáfase/genética , Modelos Moleculares , Mutação , Oryza/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poliploidia , Conformação Proteica , Transcriptoma , Triticum/citologia
12.
Proc Natl Acad Sci U S A ; 111(39): 14181-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225401

RESUMO

Two closely related genes encoding the jasmonate-induced protein 60 (JIP60) were identified in the barley genome. The gene on chromosome arm 4HL encodes the previously identified protein encoded by the cDNA X66376.1. This JIP60 protein is characterized here and shown to consist of two domains: an NH2-terminal domain related to ribosome-inactivating proteins and a COOH-terminal domain, which displays similarity to eukaryotic translation initiation factor 4E (eIF4E). JIP60 undergoes processing in vivo, as a result of which JIP60's COOH-terminal eIF4E domain is released and functions in recruiting a subset of cellular messengers for translation. This effect was observed for both MeJA-treated and naturally senescing plants. Because the JIP60 gene is in close proximity to several quantitative trait loci for both biotic and abiotic stress resistance, our results identify a unique target for future breeding programs.


Assuntos
Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Mapeamento Cromossômico , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Choque Térmico/biossíntese , Hordeum/efeitos dos fármacos , Dados de Sequência Molecular , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Locos de Características Quantitativas , Homologia de Sequência de Aminoácidos , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 111(32): 11882-7, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074914

RESUMO

Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.


Assuntos
Evolução Molecular , Poliploidia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Triticum/genética , Triticum/fisiologia , Cromossomos de Plantas/genética , Diploide , Aptidão Genética , Genoma de Planta , Nitrogênio/metabolismo , Pressão Osmótica , Fotossíntese/genética , Salinidade , Sódio/metabolismo , Tetraploidia
14.
Proc Natl Acad Sci U S A ; 111(29): 10642-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002488

RESUMO

Cytosine methylation at CG sites ((m)CG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain (m)CG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2(-/-)), which directly segregated from normal heterozygote plants (OsMET1-2(+/-)), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of (m)CG occurred in the mutant methylome, which was accompanied by a plethora of quantitative molecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Metiltransferases/genética , Mutação/genética , Oryza/genética , Plântula/genética , Citosina/metabolismo , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Fases de Leitura Aberta/genética , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/crescimento & desenvolvimento
15.
J Integr Plant Biol ; 59(8): 535-551, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544763

RESUMO

Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDC1) implicated in a respiratory complex 1-like electron transport chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable NH2 -terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriais/metabolismo , Sinais Direcionadores de Proteínas , Cloroplastos/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Família Multigênica , Ligação Proteica , Plântula/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(49): 19962-7, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248378

RESUMO

A family of 17 putative preprotein and amino acid transporters designated PRAT has been identified in Arabidopsis thaliana, comprising PRAT proteins in mitochondria and chloroplasts. Although some PRAT proteins, such as the translocon of the mitochondrial inner membrane (TIM) proteins TIM22 and TIM23, play decisive roles for the translocation and import of mitochondrial inner membrane proteins, little is known about the role of the different PRAT members in chloroplasts. Here we report the identification of three distinct PRAT proteins as part of a unique protein import site. One of the identified PRAT proteins is identical with a previously characterized hypothetical protein (HP) of 20 kDa designated HP20 of the outer plastid envelope membrane. The second PRAT component is represented by HP30, and the third is identical to HP30-2, a close relative of HP30. Both HP30 and HP30-2 are inner plastid envelope membrane proteins of chloroplasts. Using biochemical, cell biological, and genetic approaches we demonstrate that all three PRAT proteins cooperate during import of transit sequence-less proteins, such as the quinone oxidoreductase homolog ceQORH used as model, into the inner chloroplast envelope membrane. Our data are reminiscent of findings reported for the TIM22 translocase, which is involved in the import of carrier proteins and other, hydrophobic membrane proteins lacking cleavable transit sequences into the inner mitochondrial membrane. Together our results establish the PRAT family as a widely used system of protein translocases in different membranes of endosymbiotic origin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/metabolismo , Western Blotting , Biologia Computacional , Citosol/metabolismo , Transporte Proteico/fisiologia
17.
Proc Natl Acad Sci U S A ; 110(9): 3447-52, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401544

RESUMO

Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that whole-chromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S(1) to >S(20)) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.


Assuntos
Aneuploidia , Cromossomos de Plantas/genética , Poliploidia , Triticum/genética , Cruzamentos Genéticos , Cariotipagem , Pólen/fisiologia , Reprodutibilidade dos Testes , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Sobrevivência de Tecidos
18.
Proc Natl Acad Sci U S A ; 110(48): 19466-71, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218593

RESUMO

Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.


Assuntos
Instabilidade Cromossômica/genética , Dosagem de Genes/genética , Variação Genética , Tetraploidia , Triticum/genética , Sequência de Bases , Primers do DNA/genética , Etiquetas de Sequências Expressas , Hibridização in Situ Fluorescente , Cariótipo , Dados de Sequência Molecular , Análise de Sequência de DNA
19.
Proc Natl Acad Sci U S A ; 109(50): 20543-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184965

RESUMO

Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.


Assuntos
DNA Glicosilases/genética , Genes de Plantas , Hordeum/enzimologia , Hordeum/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Doença Celíaca/dietoterapia , Mapeamento Cromossômico , Clonagem Molecular , Ilhas de CpG , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA de Plantas/genética , Dieta Livre de Glúten , Proteínas Alimentares/efeitos adversos , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Triticum/efeitos adversos
20.
Phytopathology ; 104(3): 248-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24512115

RESUMO

Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production.


Assuntos
Ascomicetos/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/prevenção & controle , Pseudomonas fluorescens/metabolismo , Rhizoctonia/efeitos dos fármacos , Triticum/microbiologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Sequência de Bases , Agentes de Controle Biológico , China , Dados de Sequência Molecular , Mutagênese Insercional , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , Rhizoctonia/crescimento & desenvolvimento , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA