Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Biochem Biophys Res Commun ; 704: 149703, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38402723

RESUMO

PEI is a cationic polymer, serving as a non-viral transfection carrier grounded in nanotechnology that enhances transfection efficiency via the proton sponge effect. RBM5 is an RNA-binding protein that can inhibit tumor development. This study involved the transfection of RBM5 in prostate cancer cells with PEI, Lipo2000, and their combination. Transwell and wound healing assays were used to observe invasion and migration of prostate cancer cells and flow cytometry was used to observe the apoptosis. Detect the expression of invasion and migration-related protein MMP9 through western blotting experiment. An activity detection kit was used to detect the activity of apoptotic protein caspase-3. We found that there was no significant difference in transfection efficiency when PEI and Lipo2000 were used alone but it significantly improved when they are combined. RBM5 reduced invasion, migration, and proliferation of prostate cancer and enhanced apoptosis. MMP9 expression was reduced, and the activity of caspase-3 was increased. PEI transfection could improve the inhibition of RBM5 on tumors more than Lipo2000. The inhibitory effect is more obvious when the two are used together. RBM5 transfected with PEI can amplify its inhibitory effect on prostate cancer, and this effect is more evident when combined with Lipo2000.


Assuntos
Proteínas de Ligação a DNA , Neoplasias da Próstata , Proteínas de Ligação a RNA , Transfecção , Humanos , Masculino , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/farmacologia , Proteínas de Ligação a DNA/uso terapêutico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Próstata/terapia , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico , Transfecção/métodos , Proteínas Supressoras de Tumor/metabolismo
2.
Chemistry ; 30(10): e202303768, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38197193

RESUMO

A simple and effective organolithium approach to the synthesis of 2-substituted benzo[cd]indoles from peri-dihalonaphthalenes and nitriles has been developed. The reaction proceeds via a surprisingly easy intramolecular aromatic nucleophilic substitution facilitated by the "clothespin effect". The discovered transformation provides good isolated yields, allows usage of an extensive range of nitriles, and demonstrates a good substituents tolerance. UV-absorption and NMR spectra of the obtained benzo[cd]indoles and their protonated forms demonstrated exclusive protonation to the indole nitrogen atom even in the presence of two NMe2 groups in positions 5 and 6 (i. e. "proton sponge" moiety).

3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941681

RESUMO

To realize RNA interference (RNAi) therapeutics, it is necessary to deliver therapeutic RNAs (such as small interfering RNA or siRNA) into cell cytoplasm. A major challenge of RNAi therapeutics is the endosomal entrapment of the delivered siRNA. In this study, we developed a family of delivery vehicles called Janus base nanopieces (NPs). They are rod-shaped nanoparticles formed by bundles of Janus base nanotubes (JBNTs) with RNA cargoes incorporated inside via charge interactions. JBNTs are formed by noncovalent interactions of small molecules consisting of a base component mimicking DNA bases and an amino acid side chain. NPs presented many advantages over conventional delivery materials. NPs efficiently entered cells via macropinocytosis similar to lipid nanoparticles while presenting much better endosomal escape ability than lipid nanoparticles; NPs escaped from endosomes via a "proton sponge" effect similar to cationic polymers while presenting significant lower cytotoxicity compared to polymers and lipids due to their noncovalent structures and DNA-mimicking chemistry. In a proof-of-concept experiment, we have shown that NPs are promising candidates for antiviral delivery applications, which may be used for conditions such as COVID-19 in the future.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Nanoestruturas/administração & dosagem , Aminoácidos/química , Sobrevivência Celular , Endocitose , Humanos , Nanoestruturas/química , Nanotubos de Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Terapêutica com RNAi
4.
J Liposome Res ; : 1-13, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563474

RESUMO

ABSTACTThe medicinal properties of genetic drugs are highly dependent on the design of delivery systems. Ionizable cationic lipids are considered core materials in delivery systems. However, there has not yet been a widespread consensus on the relationship between the wide diversity of lipid structure design and gene delivery efficiency. The aims of the research work were to synthesize ionizable cholesterol derivatives (iChol-lipids) and to evaluate their potential applications as gene delivery vector. A series of iChol-lipids with different head groups were synthesized with carbamate bond spacer. The chemical structures were characterized by 1H NMR, MS, melting range, and pKa. The interactions between iChol-lipids and MALAT1-siRNA were studied by molecular dynamics simulations and compared with market available DC-Chol, which revealed that hydrogen bonds, salt-bridge, and electrostatic interaction were probably involved. The self-assemble behaviors of these lipids were intensively investigated and evaluated by dynamic laser scattering in the presence of different helper lipids and PEGylated lipids. Their plasmid binding ability, transfection efficiency, hemolytic toxicity, and cytotoxicity were fully studied. IZ-Chol-LNPs was proved to be highly potential to effectively complex with DNA, and endosome escape mechanisms mediated by proton sponge effect was verified by pH-sensitive fluorescence probe BCFL.

5.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474177

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Ganciclovir/farmacologia , MicroRNAs/genética , Sarcoma de Kaposi/genética
6.
Bioconjug Chem ; 34(10): 1822-1834, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37733627

RESUMO

The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/química , Prótons , Oligonucleotídeos/metabolismo , Endocitose , Polímeros
7.
Bioconjug Chem ; 34(8): 1418-1428, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37437196

RESUMO

Nucleic acid-based medicines and vaccines are becoming an important part of our therapeutic toolbox. One key genetic medicine is antisense oligonucleotides (ASOs), which are short single-stranded nucleic acids that downregulate protein production by binding to mRNA. However, ASOs cannot enter the cell without a delivery vehicle. Diblock polymers containing cationic and hydrophobic blocks self-assemble into micelles that have shown improved delivery compared to linear nonmicelle variants. Yet synthetic and characterization bottlenecks have hindered rapid screening and optimization. In this study, we aim to develop a method to increase throughput and discovery of new micelle systems by mixing diblock polymers together to rapidly form new micelle formulations. We synthesized diblocks containing an n-butyl acrylate block chain extended with cationic moieties amino ethyl acrylamide (A), dimethyl amino ethyl acrylamide (D), or morpholino ethyl acrylamide (M). These diblocks were then self-assembled into homomicelles (A100, D100, and M100)), mixed micelles comprising 2 homomicelles (MixR%+R'%), and blended diblock micelles comprising 2 diblocks blended into one micelle (BldR%R'%) and tested for ASO delivery. Interestingly, we observed that mixing or blending M with A (BldA50M50 and MixA50+M50) did not improve transfection efficiency compared to A100; however, when M was mixed with D, there was a significant increase in transfection efficacy for the mixed micelle MixD50+M50 compared to D100. We further examined mixed and blended D systems at different ratios. We observed a large increase in transfection and minimal change in toxicity when M was mixed with D at a low percentage of D incorporation in mixed diblock micelles (i.e., BldD20M80) compared to D100 and MixD20+M80. To understand the cellular mechanisms that may result in these differences, we added proton pump inhibitor Bafilomycin-A1 (Baf-A1) to the transfection experiments. Formulations that contain D decreased in performance in the presence of Baf-A1, indicating that micelles with D rely on the proton sponge effect for endosomal escape more than micelles with A. This result supports our conclusion that M is able to modulate transfection of D, but not with A. This research shows that polymer blending in a manner similar to that of lipids can significantly boost transfection efficiency and is a facile way to increase throughput of testing, optimization, and successful formulation identification for polymeric nucleic acid delivery systems.


Assuntos
Micelas , Oligonucleotídeos Antissenso , Polímeros/química , Oligonucleotídeos , Acrilamidas
8.
Mol Pharm ; 20(10): 4868-4882, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37708383

RESUMO

Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.

9.
Mol Pharm ; 20(3): 1519-1530, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36702154

RESUMO

Combined chemoradiotherapy can improve antitumor efficiency and reduce the side effects of monotherapy. In this study, we aimed to construct dendritic peptide-based multifunctional nanoparticles (Au@SPP@DOX) for a prolonged circulation time, enhanced cellular uptake, and targeted cancer therapy. Amphiphilic micelle PEG-polylysine-SA (SPP) is composed of polylysine combined with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic stearic acid (SA). Doxorubicin (DOX) is loaded via the hydrophilic-hydrophobic interaction of SPP, and gold nanoparticles (AuNPs) are loaded via the electrostatic interaction with SPP. Au@SPP@DOX showed good biocompatibility and could be successfully accumulated at tumor sites through the enhanced permeability and retention (EPR) effect. Then, lysosomes could be ruptured due to the proton sponge effect. DOX became protonated in response to tumor extracellular acidity and was then released from SPP. Under the action of low-dose radiation, Au@SPP@DOX could promote the production of reactive oxygen species (ROS), increase mitochondrial dysfunction, block cell division, and ultimately promote tumor cell apoptosis to achieve a better antitumor effect. This study highlighted the benefit of chemoradiotherapy and suggested that Au@SPP@DOX might serve as a high-efficiency codelivery system for cancer combination therapy in the future.


Assuntos
Nanopartículas Metálicas , Nanopartículas Multifuncionais , Nanopartículas , Ouro/química , Polilisina , Linhagem Celular Tumoral , Nanopartículas Metálicas/química , Doxorrubicina , Polietilenoglicóis/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
10.
Nanotechnology ; 34(24)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36878001

RESUMO

In order to prevent drugs from being captured and degraded by the acidic environment of organelles, such as lysosomes, after entering cells, this study designed and synthesized a novel carrier amphiphilic polypeptide (DGRHHHLLLAAAA), designated P13, for use as a tumor-targeting drug delivery vehicle. The P13 peptide was synthesized by the solid phase synthesis method, and its self-assembly behavior and drug-loading capacity in aqueous solution were studied and characterizedin vitro. Doxorubicin (DOX) was loaded by dialysis method, and P13 and DOX were mixed at a mass ratio of 6:1 to form regular rounded globules. The acid-base buffering capacity of P13 was investigated determined by acid-base titration. The results revealed that P13 had excellent acid-base buffering capacity, a critical micelle concentration value of about 0.000 21 g l-1, and the particle size of P13-Dox nanospheres was 167 nm. The drug encapsulation efficiency and drug loading capacity of micelles were 20.40 ± 1.21% and 21.25 ± 2.79%, respectively. At the concentration of 50µg ml-1of P13-DOX , the inhibition rate was 73.35%. The results of thein vivoantitumor activity assay in mice showed that P13-DOX also exhibited excellent inhibitory effect on tumor growth, compared with the tumor weight of 1.1 g in the control group, the tumor weight in the P13-DOX-treated group was only 0.26 g. Additionally, the results of hematoxylin and eosin staining of the organs showed that P13-DOX had no damaging effect on normal tissues. The novel amphiphilic peptide P13 with proton sponge effect designed and prepared in this study is expected to be a promising tumor-targeting drug carrier with excellent application potential.


Assuntos
Neoplasias , Prótons , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Micelas , Peptídeos/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
11.
Environ Res ; 239(Pt 2): 117263, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797672

RESUMO

RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Sistemas de Liberação de Fármacos por Nanopartículas , Interferência de RNA , Neoplasias/genética , Neoplasias/terapia , Terapia Genética , Nanotecnologia/métodos , Nanopartículas/química
12.
Biochem Biophys Res Commun ; 627: 21-29, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36029534

RESUMO

Deciphering the endocytosis mechanisms of nanoparticle entry in cells is crucial to understand the fate of nanoparticles and the biological activity of the transported cargo. Such studies require the use of reporter agents such as fluorescent markers. Previously, we have reported the synthesis of self-fluorescent HAp nanoparticles as efficient nucleic acid delivery agents in prokaryotic and eukaryotic cells. Here, we show the application of biocompatible self-fluorescent nano delivery vehicle based on HAp and CPP- octa-arginine as an efficient system to study the mechanisms of intracellular fate of a gene delivery agent. The pathway of octa-arginine functionalized HAp NP (R8HNP) and HAp NP uptake in R1 ESCs was elucidated using confocal microscopy with the help of endocytic inhibitors. The NPs mainly enter R1 ESCs by clathrin mediated and macropinocytosis pathways. It was established that the NPs escape endosomal degradation by proton sponge effect owing to their ability to buffer the pH and trigger osmotic rupture. The functionalization of CPP, effectively enhanced the internalization and endosomal escape in R1 ESCs. The detailed results of these studies are outlined in this manuscript.


Assuntos
Durapatita , Nanopartículas , Arginina/farmacologia , Clatrina/metabolismo , Durapatita/farmacologia , Endocitose , Nanopartículas/química
13.
Small ; 18(27): e2202604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661593

RESUMO

Macrophages play essential roles in the progression of rheumatoid arthritis (RA), which are polarized into the pro-inflammatory M1 phenotype with significant oxidative stress and cytokines excretion. Herein, an active targeting nanomedicine based on metal-organic frameworks (MOFs) to re-educate the diseased macrophages for RA therapy is reported. The MOFs are prepared via coordination between tannic acid (TA) and Fe3+ , and anti-TNF-α siRNA is loaded via a simple sonication process, achieving high loading capacity comparable to cationic vectors. The MOFs show excellent biocompatibility, and enable rapid endo/lysosome escape of siRNA via the proton-sponge effect for effective cytokines down-regulation. Importantly, such nanomedicine displays intrinsic radicals scavenging capability to eliminate a broad spectrum of reactive oxygen and nitrogen species (RONS), which in turn repolarizes the M1 macrophages into anti-inflammatory M2 phenotypes for enhanced RA therapy in combination with siRNA. The MOFs are further modified with bovine serum albumin (BSA) to allow cascade RA joint and diseased macrophages targeted delivery. As a result, an excellent anti-RA efficacy is achieved in a collagen-induced arthritis mice model. This work provides a robust gene vector with great translational potential, and offers a vivid example of rationally designing MOF structure with multifunctionalities to synergize with its payload for enhanced disease treatment.


Assuntos
Artrite Reumatoide , Estruturas Metalorgânicas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Citocinas , Camundongos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Inibidores do Fator de Necrose Tumoral
14.
J Org Chem ; 87(24): 16506-16516, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36446078

RESUMO

The lithiation of 2,7-disubstituted derivatives of 1,8-bis(dimethylamino)naphthalene (DMAN, proton sponge) bearing potentially ortho-directing OMe, NMe2, and SMe groups was studied. It has been shown that OMe groups facilitate selective dual ß-lithiation of the naphthalene moiety while the 2(7)-NMe2 groups allow only monolithiation presumably due to the decreased acidity of the ring C-H bonds and conformational immobilization after coordination to the lithium atom. In contrast, the SMe groups provided no ring lithiation and underwent deprotonation of their methyl fragment. The first representatives of previously unknown 2,3,6,7-tetrasubstituted DMANs have been synthesized in good yield after treatment of 2,7-dimethoxy-3,6-dilithio DMAN with the appropriate electrophiles (MeI, Me2S2, Me3SiCl, DMF, etc.). Because the exceedingly high basicity of 2,7-dimethoxy DMAN is commonly attributed to the so-called "buttressing effect" (BE), the availability of 2,3,6,7-tetrasubstituted species provided the first opportunity to study the double BE version. Using X-ray diffraction and basicity measurements, we showed that due to the high conformational mobility of the methoxy groups, the most striking manifestations of double BE are the strong planarization of peri-NMe2 groups and a significant decrease in basicity, while the length and the other properties of the intramolecular NHN hydrogen bond in the corresponding protonated species undergo minor changes.

15.
Pharm Res ; 39(6): 1181-1195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229237

RESUMO

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference. Calcium acetate as a remote loading agent allowed to engineer PSL- and NPSL-SN25860 with DL of > 31.1% (w/w). The IC50 of PSL-SN25860 was 21- and 141-fold lower than NPSL and free drug, respectively. At 48 h following injection of PSL-SN25860, NPSL-SN25860 and the free drug, drug concentrations in EMT6-nfsB murine breast tumors were 56.3 µg/g, 6.76 µg/g and undetectable (< 0.015 µg/g), respectively (n = 3). Meanwhile, the ex vivo tumor clonogenic assay showed 9.1%, 19.4% and 42.7% cell survival in the respective tumors. Live-cell imaging and co-localization analysis suggested endosomal escape was accomplished by destabilization of PSL followed by release of Ca2+ in endosomes allowing induction of a proton sponge effect. Subsequent endosomal rupture was observed approximately 30 min following endocytosis of PSL containing Ca2+. Additionally, calcium in liposomes promoted internalization of both PSL and NPSL. Taken together, this study demonstrated multifaceted functions of calcium acetate in promoting drug loading into liposomes, cellular uptake, and endosomal escape of PSL for efficient cytoplasmic drug delivery. The results shed light on designing nano-platforms for cytoplasmic delivery of various therapeutics.


Assuntos
Lipossomos , Neoplasias , Animais , Cálcio , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Endossomos , Concentração de Íons de Hidrogênio , Lipossomos/farmacologia , Camundongos , Prótons
16.
Immunopharmacol Immunotoxicol ; 44(2): 261-274, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35179434

RESUMO

BACKGROUND: Circular RNA 0067934 (circ_0067934) has been revealed as a cancer driver in multiple human malignancies, whereas its action in the pathogenesis of ovarian cancer (OC) remains unclear. This study focuses on the function of circ_0067934 in tumorigenesis and cisplatin (DDP) resistance in OC and the molecular mechanism. METHODS: Expression of circ_0067934 in OC tissues and cells was examined, and its correlation with the clinical characteristics of patients was analyzed. Candidate targets of circ_0067934 were predicted using bioinformatics systems. Binding relationships between circ_0067934 and microRNA (miR)-545-3p and between miR-545-3p and inorganic pyrophosphatase 1 (PPA1) were validated via luciferase assays. Gain- and loss-of functions of circ_0067934, miR-545-3p and PPA1 were performed to determine their functions in proliferation, invasion, apoptosis and DDP resistance of OC cells in vitro and in vivo. RESULTS: Circ_0067934 was overexpressed in OC samples and associated with advanced tumor staging and lymph node metastasis. Downregulation of circ_0067934 reduced DDP resistance of the DDP-resistant A2780/DDP cell line and reduced cell proliferation and invasion, but the malignant behaviors of OC cells were restored after further miR-545-3p downregulation. Circ_0067934 served as a sponge for miR-545-3p and diminished its suppressive effect on PPA1 translation. Artificial upregulation of PPA1 enhanced proliferation, invasion and DDP resistance of A2780/DDP cells, and it reduced phosphorylation of the pro-apoptotic JNK signaling. Similar results were found in vivo. CONCLUSION: This study suggests that circ_0067934 sequesters miR-545-3p and enhances PPA1 expression to promote tumorigenesis and DDP resistance in OC. This study may provide novel approaches in the management of OC.


Assuntos
Cisplatino , Pirofosfatase Inorgânica , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Carcinogênese/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pirofosfatase Inorgânica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , RNA Circular/metabolismo , Transdução de Sinais
17.
Langmuir ; 37(39): 11484-11492, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34565150

RESUMO

This paper reports the facile preparation of dual stimuli-responsive gel particles that simultaneously respond to weakly acidic and reducing stimuli and the application of these gel particles as a drug delivery carrier. The dual stimuli-responsive gel particles composed of a pH-responsive polymer network cross-linked with reduction stimuli-responsive disulfide cross-links, and biocompatible poly(ethylene glycol) cross-links were prepared by soap-free emulsion polymerization. The resulting gel particles were colloidally stable at physiological ionic strength and had a diameter of approximately 200 nm with a narrow size distribution. The resulting gel particles slightly swelled in an acidic environment. On the other hand, the gel particles drastically swelled under simultaneous weakly acidic and reducing conditions because of the ionization of tertiary amino groups in the gel network and a decrease in the cross-linking density resulting from cleavage of the disulfide cross-links. When cells were treated with the gel particles, they were taken up by cells via the endocytosis pathway and distributed in the cytosol after endosomal escape by the proton sponge effect. In addition, a hydrophobic drug, doxorubicin (Dox), was loaded into the gel particles through hydrophobic interactions. Dox was released from the gel particles under weakly acidic and reducing conditions, while the Dox release was inhibited at neutral pH. The weakly acidic pH- and reduction stimuli-responsive release of Dox from gel particles was attributed to the drastic swelling of these particles. The fascinating properties of the dual stimuli-responsive gel particles suggest that they can provide a useful platform for designing intracellular drug delivery carriers.


Assuntos
Doxorrubicina , Portadores de Fármacos , Doxorrubicina/toxicidade , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Micelas
18.
J Nanobiotechnology ; 19(1): 200, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225744

RESUMO

BACKGROUND: Recent studies have demonstrated that multidrug resistance (MDR) is a critical factor in the low efficacy of cancer chemotherapy. The main mechanism of MDR arises from the overexpression of P-glycoprotein (P-gp), which actively enhances drug efflux and limits the effectiveness of chemotherapeutic agents. RESULTS: In this study, we fabricated a "combo" nanoagent equipping with triple synergistic strategies for enhancing antitumor efficacy against MDR cells. Tumor homing-penetrating peptide endows the nanosystem with targeting and penetrating capabilities in the first stage of tumor internalization. The abundant amine groups of polyethylenimine (PEI)-modified nanoparticles then trigger a proton sponge effect to promote endo/lysosomal escape, which enhances the intracellular accumulation and retention of anticancer drugs. Furthermore, copper tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) encapsulated in the nanosystem, effectively scavenges endogenous glutathione (GSH) to reduce the detoxification mediated by GSH and sensitize the cancer cells to drugs, while simultaneously serving as a photoacoustic imaging (PAI) contrast agent for image visualization. Moreover, we also verify that these versatile nanoparticles in combination with PD-1/PD-L1 blockade therapy can not only activate immunological responses but also inhibit P-gp expression to obliterate primary and metastatic tumors. CONCLUSION: This work shows a significant enhancement in therapeutic efficacy against MDR cells and syngeneic tumors by using multiple MDR reversing strategies compared to an equivalent dose of free paclitaxel.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Nanopartículas/uso terapêutico , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Cobre , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Tratamento Farmacológico , Feminino , Compostos Heterocíclicos , Humanos , Lisossomos , Células MCF-7 , Metaloporfirinas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Nanopartículas/química , Compostos Organofosforados , Paclitaxel/farmacologia
19.
J Nanobiotechnology ; 19(1): 336, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689763

RESUMO

Macrophage cell membrane-camouflaged nanocarriers can effectively reduce immune cell clearance and actively target tumors. In this study, a macrophage cell membrane-camouflaged mesoporous silica nanorod (MSNR)-based antitumor drug carrier equipped with a cationic polymer layer was developed. As drug carriers, these MSNRs were loaded with the thermosensitive phase change material L-menthol (LM), the chemotherapy drug doxorubicin (DOX) and the fluorescent molecule indocyanine green (ICG). The rod-like shape of the MSNRs was shown to enhance the penetration of the drug carriers to tumors. In the weakly acidic tumor microenvironment, the cationic polymer exhibited a proton sponge effect to trigger macrophage cell membrane coating detachment, promoting tumor cell uptake. Following nanocarrier uptake, ICG is heated by near-infrared (NIR) irradiation to make LM undergo a phase transition to release DOX and generate a synergistic effect of thermochemotherapy which kills tumor cells and inhibits tumor growth together with reactive oxygen species (ROS) produced by ICG. Overall, this nanohybrid drug delivery system demonstrates an intelligent cascade response, leads to tissue-cell specific targeting and improves drug release accuracy, thus proving to be an effective cancer therapy.


Assuntos
Antineoplásicos , Membrana Celular , Sistemas de Liberação de Medicamentos/métodos , Macrófagos/citologia , Nanotubos/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Verde de Indocianina/química , Raios Infravermelhos , Neoplasias/metabolismo , Fotoquimioterapia , Terapia Fototérmica , Silício/química
20.
Mar Drugs ; 19(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809895

RESUMO

By activity-guided fractionation based on inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2), six fistularin compounds (1-6) were isolated from the marine sponge Ecionemia acervus (order Astrophorida). Based on stereochemical structure determination using Mosher's method, fistularin-3 was assigned as a new stereoisomer. On the basis of the stereochemistry of fistularin-3, the stereochemical homogeneity of all six compounds was established by comparing carbon and proton chemical shifts. For fistularin-1 (1) and -2 (2), quantum calculations were performed to confirm their stereochemistry. In a co-culture system of human epithelial Caco-2 cells and THP-1 macrophages, all six isolated compounds showed potent anti-inflammatory activities. These bioactive fistularins inhibited the production of NO, PGE2, TNF-α, IL-1ß, and IL-6 induced by lipopolysaccharide and interferon gamma. Inducible NO synthase and cyclooxygenase-2 expression and MAPK phosphorylation were downregulated in response to the inhibition of NF-κB nuclear translocation. Among the compounds tested, fistularin-1 (1) and 19-deoxyfistularin-3 (4) showed the highest activity. These findings suggest the potential use of the marine sponge E. acervus and its metabolites as pharmaceuticals for the treatment of inflammation-related diseases including inflammatory bowel disease.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Isoxazóis/farmacologia , Poríferos/metabolismo , Tirosina/análogos & derivados , Animais , Anti-Inflamatórios/isolamento & purificação , Células CACO-2 , Técnicas de Cocultura , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Isoxazóis/isolamento & purificação , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estereoisomerismo , Relação Estrutura-Atividade , Células THP-1 , Tirosina/isolamento & purificação , Tirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA