Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139266

RESUMO

Lipedema is a chronic condition characterized by disproportionate and symmetrical enlargement of adipose tissue, predominantly affecting the lower limbs of women. This study investigated the use of metabolomics in lipedema research, with the objective of identifying complex metabolic disturbances and potential biomarkers for early detection, prognosis, and treatment strategies. The study group (n = 25) comprised women diagnosed with lipedema. The controls were 25 lean women and 25 obese females, both matched for age. In the patients with lipedema, there were notable changes in the metabolite parameters. Specifically, lower levels of histidine and phenylalanine were observed, whereas pyruvic acid was elevated compared with the weight controls. The receiver operating characteristic (ROC) curves for the diagnostic accuracy of histidine, phenylalanine, and pyruvic acid concentrations in distinguishing between patients with lipedema and those with obesity but without lipedema revealed good diagnostic ability for all parameters, with pyruvic acid being the most promising (area under the curve (AUC): 0.9992). Subgroup analysis within matched body mass index (BMI) ranges (30.0 to 39.9 kg/m2) further revealed that differences in pyruvic acid, phenylalanine, and histidine levels are likely linked to lipedema pathology rather than BMI variations. Changes in low-density lipoprotein (LDL)-6 TG levels and significant reductions in various LDL-2-carried lipids of patients with lipedema, compared with the lean controls, were observed. However, these lipids were similar between the lipedema patients and the obese controls, suggesting that these alterations are related to adiposity. Metabolomics is a valuable tool for investigating lipedema, offering a comprehensive view of metabolic changes and insights into lipedema's underlying mechanisms.


Assuntos
Lipedema , Humanos , Feminino , Lipedema/metabolismo , Histidina , Ácido Pirúvico , Obesidade , Lipídeos , Fenilalanina
2.
J Sci Food Agric ; 103(7): 3489-3500, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36754830

RESUMO

BACKGROUND: Oxidation is a major problem for oils and fats, which can be mitigated by antioxidants. Rutin has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. In this study, an efficient enzymatic synthesis route of lipophilic rutin ester was established using oleic acid as an acyl donor, and the antioxidant potential of rutin oleate was evaluated for the first time by proton (1 H) nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The synthesized product was finally identified as rutin oleate by Fourier transform infrared, high-performance liquid chromatography-mass spectrometry, and 1 H, carbon-13, and DEPT-135 NMR analyses, and the acylation site was the 4‴-OH of the rhamnose group in the rutin molecule. The maximum conversion was over 93% after 48 h of reaction using Novozym 435 as catalyst under the best conditions among these tests. The conversion of rutin ester decreased with the increase of carbon chain length and the number of carbon-carbon double bonds of the fatty acid molecule. Most importantly, rutin oleate exhibited antioxidant capacity comparable to butylated hydroxytoluene and its counterparts (rutin and oleic acid) at low temperatures (60° C), but had a significant advantage at high temperatures (120° C). CONCLUSION: The antioxidant activity of rutin was significantly enhanced by lipase-mediated esterification with oleic acid. Therefore, rutin oleate could be further developed as a novel antioxidant for use in oil- and fat-based foods. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Rutina , Antioxidantes/química , Ácido Oleico/química , Lipase/química , Carbono/química , Ésteres , Óleos
3.
Fa Yi Xue Za Zhi ; 38(4): 473-477, 2022 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36426690

RESUMO

OBJECTIVES: To establish a method to identify unknown sample based on the combined use of Fourier transform infrared spectroscopy (FTIR), gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS), ultra-high performance liquid chromatography-linear ion trap quadrupole-orbitrap mass spectrometry (UPLC-LTQ-Orbitrap MS) and 1H-nuclear magnetic resonance spectroscopy (1H-NMR) technique. METHODS: The unknown sample was directly analyzed by FTIR. The unknown sample was dissolved in methanol solution containing internal standard SKF525A and the supernatant was detected by GC-QTOF-MS and UPLC-LTQ-Orbitrap MS. The unknown sample was dissolved in methanol-d4 solution for structural analysis of 1H-NMR. RESULTS: The characteristic absorption peaks of FTIR spectra obtained from unknown sample were 1 682 (C=O bond), 1 503, 1 488, 1 436, 1 363, 1 256, 1 092, 1 035, 935, 840 and 800 cm-1, the characteristic fragment ions (m/z) of GC-QTOF-MS were 86.096 4 (base peak), 58.065 1, 149.023 5, 121.028 6 and 65.038 6, the accurate mass [M+H]+ detected by UPLC-LTQ-Orbitrap MS was 236.127 7. The sample was identified as synthetic cathinone new psychoactive substance Eutylone by 1H-NMR. CONCLUSIONS: The method established in this study can be used for structural confirmation of Eutylone.


Assuntos
Metanol , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(6): 591-600, 2021 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34275927

RESUMO

OBJECTIVES: Coronary heart disease (CHD) is a serious threat to human health because of its high morbidity. It is very urgent to study the pathogenesis of CHD and the effective drug target. The purpose of this paper is using the 1H-nuclear magnetic resonance spectroscopy (1H-NMR) metabolomics technology to establish the metabolic fingerprint and find the potential biomarker metabolites of CHD with blood-stasis syndrome and phlegm syndrome, and to reveal the metabolic mechanism of Xuefu Zhuyu Decoction for the treatment of CHD with blood stasis syndrome. METHODS: The plasma samples of 69 patients with CHD blood-stasis syndrome, 60 patients with CHD phlegm syndrome, and 40 healthy volunteers were collected in this study. Based on the 1H-NMR metabolomics technology, the metabolic fingerprint of CHD with blood-stasis syndrome and phlegm syndrome was established. Multivariate statistical analysis methods including principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to find the potential biomarker metabolites of CHD with blood-stasis syndrome and phlegm syndrome. Xuefu Zhuyu Decoction was used to randomly selected blood-stasis syndrome patient. The plasma samples of pre-treatment and post-treatment were collected. 1H-NMR and multivariate statistical analysis were used to analyze the changes of metabolites in patients with CHD blood-stasis syndrome before and after Xuefu Zhuyu Decoction treatment. RESULTS: A total of 15 potential biomarkers were identified in the plasma of patients with CHD blood-stasis syndrome, including 3-hydroxybutyrate (3-HB), lactate, alanine, glutamate, glutamine, pyruvate,phosphatidylcholine (PC), glycerylphosphorylcholine (GPC), glycine, glucose, phenylalanine, citrate,tyrosine, formate,very low density lipoprotein (VLDL). The levels of glucose, 3-HB, and VLDL increased, while the levels of other 12 metabolites decreased. A total of 16 potential biomarkers were identified in the plasma of patients with CHD phlegm syndrome, including valine, lactate, alanine, N-acetyl-ß-glucosaminidase (NAG), glutamate, glutamine, pyruvate, creatine, choline, glycine, glucose, phenylalanine, citrate, histidine, tyrosine, and formate. The levels of glucose and choline increased, while the levels of other 12 metabolites decreased. After treatment with Xuefu Zhuyu Decoction, the levels of choline, phospholipids/glycerolipids, creatine, lipids, and citrate increased, while the level of lactate decreased in patients with CHD blood-stasis syndrome. CONCLUSIONS: 1H-NMR combined with multivariate statistical method could effectively establish the diagnostic model for CHD blood-stasis syndrome and CHD phlegm syndrome, and find the metabolites related to the syndrome type. The metabolic mechanism of Xuefu Zhuyu Decoction on CHD blood-stasis syndrome may be associated with regulation of lipid metabolism and energy metabolism.


Assuntos
Doença das Coronárias , Metabolômica , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética
5.
Reprod Biomed Online ; 41(4): 640-652, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32839101

RESUMO

RESEARCH QUESTION: What is the correlation between serum metabolic profile and endometriosis phenotype? DESIGN: A pilot study nestled in a prospective cohort study at a university hospital, including 46 patients with painful endometriosis who underwent surgery and 21 controls who did not have macroscopic endometriotic lesions. Endometriosis was strictly classified into two groups of 23 patients each: endometrioma (OMA) and deep infiltrating endometriosis (DIE). Serum samples were collected before surgery for metabolomic profiling based on proton-nuclear magnetic resonance spectroscopy in combination with statistical approaches. Comparative identification of the metabolites in the serum from endometriosis patients and from controls was carried out, including an analysis according to endometriosis phenotype. RESULTS: The serum metabolic profiles of the endometriosis patients revealed significantly lower concentrations of several amino acids compared with the controls, whereas the concentrations of free fatty acids and ketone bodies were significantly higher. The OMA and the DIE phenotypes each had a specific metabolic profile, with higher concentrations of two ketone bodies in the OMA group, and higher concentrations of free fatty acids and lipids in the DIE group. CONCLUSION: Proton-nuclear magnetic resonance-based metabolomics of serum samples were found to have ample potential for identifying metabolic changes associated with endometriosis phenotypes. This information may improve our understanding of the pathogenesis of endometriosis.


Assuntos
Endometriose/sangue , Ácidos Graxos não Esterificados/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Metaboloma , Fenótipo , Projetos Piloto , Estudos Prospectivos
6.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096833

RESUMO

The minor components of vegetable oils are important for their oxidative stability. In order to know to what extent they can influence oil behaviour under oxidative conditions, two commercial soybean oils, one virgin and the other refined, both with very similar compositions in acyl groups but differing in their minor component profiles, were subjected to accelerated storage conditions. They were characterized by 1H nuclear magnetic resonance (NMR) and direct immersion solid-phase microextraction coupled to gas chromatography/mass spectrometry (DI-SPME-GC/MS), while oil oxidation was monitored by 1H-NMR. The lower levels of tocols and sterols in the virgin oil, together with its higher free fatty acid content when compared to the refined one, result in a lower oxidative stability. This is deduced from faster degradation of acyl groups and earlier generation of hydroperoxides, epoxides, and aldehydes in the virgin oil. These findings reveal that commercial virgin soybean oil quality is not necessarily higher than that of the refined type, and that a simple and rapid analysis of oil minor components by DI-SPME-GC/MS would enable one to establish quality levels within oils originating from the same plant species and similar unsaturation level regarding composition in potentially bioactive compounds and oxidative stability.


Assuntos
Óleo de Soja/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Oxirredução
7.
Crit Care ; 23(1): 169, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088568

RESUMO

BACKGROUND: Septic shock is the most severe phase of sepsis and is associated with high rates of mortality. However, early stage prediction of septic shock outcomes remains difficult. Metabolomic techniques have emerged as a promising tool for improving prognosis. METHODS: Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models separating the serum metabolomes of survivors from those of non-survivors were established with samples obtained at the intensive care unit (ICU) admission (H0) and 24 h later (H24). For 51 patients with available H0 and H24 samples, multi-level modeling was performed to provide insight into different metabolic evolutions that occurred between H0 and H24 in the surviving and non-surviving patients. Relative quantification and receiver operational characteristic curves (ROC) were applied to estimate the predictability of key discriminatory metabolites for septic shock mortality. RESULTS: Metabolites that were involved in energy supply and protein breakdown were primarily responsible for differentiating survivors from non-survivors. This was not only seen in the H0 and H24 discriminatory models, but also in the H0-H24 paired models. Reanalysis of extra H0-H24 paired samples in the established multi-level model demonstrated good performance of the model for the classification of samplings. According to the ROC results, nine discriminatory metabolites defined consistently from the unpaired model and the H0-H24 time-trend change (ΔH24-H0) show good prediction of mortality. These results suggest that NMR-based metabolomic analysis is useful for a better overall assessment of septic shock patients. CONCLUSIONS: Dysregulation of the metabolites identified by this study is associated with poor outcomes for septic shock. Evaluation of these compounds during the first 24 h after ICU admission in the septic shock patient may be helpful for estimating the severity of cases and for predicting outcomes. TRIAL REGISTRATION: All human serum samples were collected and stored, provided by the "center of biologic resources for liver disease", in Jean Verdier Hospital, Bondy, France (BB-0033-00027).


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/estatística & dados numéricos , Choque Séptico/metabolismo , Sobreviventes/estatística & dados numéricos , Adulto , Idoso , Análise Discriminante , Feminino , França , Humanos , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Choque Séptico/fisiopatologia , Análise de Sobrevida
8.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086103

RESUMO

Many polysaccharides have been shown to be bioactive, with the addition of sulfate often enhancing or altering this bioactivity. In previous studies, masson pine pollen polysaccharides, to include a sulfate derivative, have been shown to promote macrophage proliferation similarly to LPS. However, the exact metabolic mechanisms promoting this proliferation remain unclear. In this study, RAW264.7 macrophage cells were treated with a purified masson pine pollen polysaccharide (PPM60-D), a sulfate derivative (SPPM60-D), or LPS. Proliferation levels at a variety of concentrations were examined using MTT assay, with optimal concentration used when performing metabolomic analysis via 1H nuclear magnetic resonance (1H-NMR). This process resulted in the identification of thirty-five intracellular metabolites. Subsequent multivariate statistical analysis showed that both LPS and SPPM60-D promote RAW264.7 proliferation by promoting aerobic respiration processes and reducing processes associated with glycolysis. While some insight was gained regarding the mechanistic differences between SPPM60-D and LPS, the specific mechanisms governing the effect of SPPM60 on RAW264.7 cells will require further elucidation. These findings show that both LPS and SPPM60-D effectively promote RAW264.7 proliferation and may have beneficial uses in maintaining cellular vitality or inhibiting cancer.


Assuntos
Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pinus/química , Pólen/química , Polissacarídeos/farmacologia , Sulfatos/química , Animais , Espectroscopia de Ressonância Magnética , Metabolômica , Camundongos , Polissacarídeos/química , Células RAW 264.7
9.
J Proteome Res ; 17(10): 3565-3573, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30183313

RESUMO

The reduction in gut microbiota diversity is associated with a range of human diseases. Overuse of antibiotics has been associated with a diminished gut-microbial diversity in humans and may promote microbiota-associated negative effects to physical health, such as the metabolic syndrome-cluster of diseases and mental illnesses. There is a pressing need to deepen the understanding of the effects of antibiotics at the biochemical level. The current study investigated metabolic effects of two widely prescribed antibiotics-vancomycin and ciprofloxacin-on biofluids and brain tissue samples of NMRI female mice using a 1H nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling approach. While both antibiotics significantly affected the host metabolic signatures of urine and feces, only ciprofloxacin induced metabolic changes in plasma. Metabolic perturbations were pronounced 1 day post-treatment, reverting back to baseline at day 20 post-treatment. Both antibiotics induced changes in the choline metabolism, host-microbial cometabolites, short chain fatty acid production, and protein/purine degradation. The metabolic profiles of brain tissue aqueous extracts did not show any antibiotics-related changes by day 20 post-treatment. The data suggest that the metabolic disruptions in biofluids caused by antibiotics are reversed by day 20 post-treatment when compared to the pre-treatment profiles.


Assuntos
Ciprofloxacina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Vancomicina/farmacologia , Animais , Antibacterianos/farmacologia , Líquidos Corporais/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos
10.
BMC Neurosci ; 19(1): 4, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502536

RESUMO

BACKGROUND: Understanding the process of relapse to abused drugs and ultimately developing treatments that can reduce the incidence of relapse remains the primary goal for the study of substance dependence. Therefore, exploring the metabolite characteristics during the relapse stage is valuable. METHODS: A heroin self-administered rat model was employed, and analysis of the 1H-nuclear magnetic resonance-based metabolomics was performed to investigate the characteristic metabolite profile upon reintroduction to the drug after abstinence. RESULTS: Sixteen metabolites in the serum of rats, including phospholipids, intermediates in TCA (Tricarboxylic Acid Cycle) cycle, keto bodies, and precursors for neurotransmitters, underwent a significant change in the reinstatement stage compared with those in the control group. In particular, energy production was greatly disturbed as evidenced by different aspects such as an increase in glucose and decrease in intermediates of glycolysis and the TCA cycle. The finding that the level of 3-hydroxybutyrate and acetoacetate increased significantly suggested that energy production was activated from fatty acids. The concentration of phenylalanine, glutamine, and choline, the precursors of major neurotransmitters, increased during the reinstatement stage which indicated that an alteration in neurotransmitters in the brain might occur along with the disturbance in substrate supply in the circulatory system. CONCLUSIONS: Heroin reinforcement resulted in impaired energy production via different pathways, including glycolysis, the TCA cycle, keto body metabolism, etc. A disturbance in the substrate supply in the circulatory system may partly explain heroin toxicity in the central nervous system. These findings provide new insight into the mechanism underlying the relapse to heroin use.


Assuntos
Encéfalo/metabolismo , Heroína/sangue , Espectroscopia de Ressonância Magnética , Metabolômica , Animais , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Ratos Sprague-Dawley , Autoadministração/métodos
11.
Mar Drugs ; 16(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735927

RESUMO

Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.


Assuntos
Antioxidantes/metabolismo , Diatomáceas/metabolismo , Microalgas/metabolismo , Óxido Nítrico/metabolismo , Aminoácidos/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Solventes/metabolismo
12.
Molecules ; 23(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012946

RESUMO

The aim of this study was to determine the effects of different solvents for extraction, liquid⁻liquid partition, and concentrations of extracts and fractions of Piper cubeba L. on anticariogenic; antibacterial and anti-inflammatory activity against oral bacteria. Furthermore, ¹H-Nuclear Magnetic Resonance (NMR) coupled with multivariate data analysis (MVDA) was applied to discriminate between the extracts and fractions and examine the metabolites that correlate to the bioactivities. All tested bacteria were susceptible to Piper cubeba L. extracts and fractions. Different solvents extraction, liquid⁻liquid partition and concentrations of extracts and fractions have partially influenced the antibacterial activity. MTT assay showed that P. cubeba L. extracts and fractions were not toxic to RAW 264.7 cells at selected concentrations. Anti-inflammatory activity evaluated by nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells showed a reduction in NO production in cells treated with P. cubeba L. extracts and fractions, compared to those without treatment. Twelve putative metabolites have been identified, which are (1) cubebin, (2) yatein, (3) hinokinin, (4) dihydrocubebin, (5) dihydroclusin, (6) cubebinin, (7) magnosalin, (8) p-cymene, (9) piperidine, (10) cubebol, (11) d-germacrene and (12) ledol. Different extraction and liquid⁻liquid partition solvents caused separation in principal component analysis (PCA) models. The partial least squares (PLS) models showed that higher anticariogenic activity was related more to the polar solvents, despite some of the active metabolites also present in the non-polar solvents. Hence, P. cubeba L. extracts and fractions exhibited antibacterial and anti-inflammatory activity and have potential to be developed as the anticariogenic agent.


Assuntos
Antibacterianos , Anti-Inflamatórios , Antineoplásicos Fitogênicos , Bactérias/crescimento & desenvolvimento , Piper/química , Extratos Vegetais/química , Solventes/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Camundongos , Células RAW 264.7
13.
J Proteome Res ; 16(6): 2221-2230, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28447460

RESUMO

The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/ß-glucose were exhibited after histidine supplement. In urine 1H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.


Assuntos
Histidina/farmacologia , Metaboloma/efeitos dos fármacos , Adulto , Aminoácidos/sangue , Aminoácidos/efeitos dos fármacos , Aminoácidos/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Suplementos Nutricionais , Feminino , Histidina/administração & dosagem , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Soro/química , Urina/química
14.
Cell Mol Life Sci ; 73(23): 4547-4557, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27188285

RESUMO

Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.


Assuntos
Saúde Mental , Redes e Vias Metabólicas , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Características da Família , Metaboloma , Fenótipo , Análise de Componente Principal , Ratos Long-Evans
15.
J Proteome Res ; 15(3): 815-25, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26784366

RESUMO

The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1ß1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1ß1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.


Assuntos
Cloridrato de Erlotinib/farmacologia , Integrina alfa1/genética , Metaboloma , Osteoartrite do Joelho/sangue , Animais , Receptores ErbB , Cloridrato de Erlotinib/uso terapêutico , Feminino , Masculino , Meniscos Tibiais/cirurgia , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Camundongos , Camundongos Knockout , Osteoartrite do Joelho/tratamento farmacológico , Espécies Reativas de Oxigênio , Canais de Potencial de Receptor Transitório
16.
Asian-Australas J Anim Sci ; 29(2): 219-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732447

RESUMO

Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using (1)H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in ß-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

17.
J Dairy Sci ; 97(3): 1552-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24440255

RESUMO

The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms.


Assuntos
Doenças dos Bovinos/diagnóstico , Cetose/diagnóstico , Cetose/veterinária , Espectroscopia de Ressonância Magnética , Ácido 3-Hidroxibutírico/sangue , Acetoacetatos/sangue , Acetona/sangue , Animais , Glicemia/metabolismo , Bovinos , Colina/sangue , Análise Discriminante , Feminino , Ácido Glutâmico/sangue , Ácido Láctico/sangue , Metabolômica , Análise de Componente Principal , Sensibilidade e Especificidade
18.
Rep Pract Oncol Radiother ; 19(6): 361-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25337408

RESUMO

AIM: To evaluate the tolerability and toxicity of PCI in patients with NSCLC. BACKGROUND: Prophylactic cranial irradiation (PCI) is a standard treatment for patients with small cell lung cancer. There are data showing a decreasing ratio of brain metastases after PCI for non-small cell lung cancer (NSCLC-non small cell lung cancer) patients but, so far, there is no evidence for increasing overall survival. The main concern in this setting is the tolerance and toxicity of the treatment. MATERIALS AND METHODS: From 1999 to 2007, 50 patients with NSCLC treated with radical intent underwent PCI (30 Gy in 15 fractions). Mean follow-up was 2.8 years. The tolerability and hematological toxicity were evaluated in all patients, a part of participants had done neuropsychological tests, magnetic resonance imaging with (1)H nuclear magnetic resonance spectra, and estimation of pituitary function. RESULTS: During follow-up, 20 patients developed distant metastases, 4-brain metastases. Fourteen (30%) patients had acute side effects: (headache, nausea, erythema of the skin). The symptoms did not require treatment breaks. Six patients complained of late side effects (vertigo, nausea, anxiety, lower extremity weakness, deterioration of hearing and olfactory hyperesthesia). Hematological complications were not observed. Testosterone levels tended to decrease (p = 0.062). Visual-motor function deteriorated after treatment (p < 0.059). Performance IQ decreased (p < 0.025) and the difference between performance IQ and verbal IQ increased (p < 0.011). Degenerative periventricular vascular changes were observed in two patients. Analysis of the spectroscopic data showed metabolic but reversible alterations after PCI. CONCLUSION: PCI in the current series was well tolerated and associated with a relatively low toxicity.

19.
J Pharm Biomed Anal ; 246: 116238, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38805849

RESUMO

Drugs and drug metabolites containing a carboxylic-acid moiety can undergo in vivo conjugation to form 1-ß-O-acyl-glucuronides (1-ß-O-AGs). In addition to hydrolysis, these conjugates can undergo spontaneous acyl migration, and anomerisation reactions, resulting in a range of positional isomers. Facile transacylation has been suggested as a mechanism contributing to the toxicity of acyl glucuronides, with the kinetics of these processes thought to be a factor. Previous 1H NMR spectroscopic and HPLC-MS studies have been conducted to measure the degradation rates of the 1-ß-O-AGs of three nonsteroidal anti-inflammatory drugs (ibufenac, R-ibuprofen, S-ibuprofen) and a dimethyl-analogue (termed here as "bibuprofen"). These studies have also determined the relative contributions of hydrolysis and acyl migration in both buffered aqueous solution, and human plasma. Here, a detailed kinetic analysis is reported, providing the individual rate constants for the acyl migration and hydrolysis reactions observed in buffer for each of the 4 AGs, together with the overall degradation rate constants of the parent 1-ß-O-AGs. Computational modelling of the reactants and transition states of the transacylation reaction using density functional theory indicated differences in the activation energies that reflected the influence of both substitution and stereochemistry on the rate of transacylation/hydrolysis.


Assuntos
Desenho de Fármacos , Glucuronídeos , Ibuprofeno , Ibuprofeno/química , Hidrólise , Acilação , Glucuronídeos/química , Humanos , Anti-Inflamatórios não Esteroides/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Química Computacional/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Cromatografia Líquida de Alta Pressão/métodos
20.
J Mol Med (Berl) ; 102(6): 819-830, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38568327

RESUMO

We conducted a comprehensive metabolomic analysis of plasma samples obtained from pregnant women who displayed varying post-vaccination antibody titers after receiving mRNA-1273-SARS-CoV-2 vaccines. The study involved 62 pregnant women, all of whom had been vaccinated after reaching 24 weeks of gestation. To quantify post-vaccination plasma antibody titers, we employed binding antibody units (BAU) in accordance with the World Health Organization International Standard. Subsequently, we classified the study participants into three distinct BAU/mL categories: those with high titers (above 2000), medium titers (ranging from 1000 to 2000), and low titers (below 1000). Plasma metabolomic profiling was conducted using 1H nuclear magnetic resonance spectroscopy, and the obtained data were correlated with the categorized antibody titers. Notably, in pregnant women exhibiting elevated anti-SARS-CoV-2 antibody titers, reduced plasma concentrations of acetate and urea were observed. A significant negative correlation between these compounds and antibody titers was also evident. An analysis of metabolomics pathways revealed significant inverse associations between antibody titers and four distinct amino acid metabolic pathways: (1) biosynthesis of phenylalanine, tyrosine, and tryptophan; (2) biosynthesis of valine, leucine, and isoleucine; (3) phenylalanine metabolism; and (4) degradation of valine, leucine, and isoleucine. Additionally, an association between the synthesis and degradation pathways of ketone bodies was evident. In conclusion, we identified different metabolic pathways that underlie the diverse humoral responses triggered by COVID-19 mRNA vaccines during pregnancy. Our data hold significant implications for refining COVID-19 vaccination approaches in expectant mothers. KEY MESSAGES : Anti-SARS-CoV-2 antibody titers decline as the number of days since COVID-19 vaccination increases. Anti-SARS-CoV-2 antibody titers are inversely associated with acetate, a microbial-derived metabolite, and urea. Amino acid metabolism is significantly associated with SARS-CoV-2 antibody titers.


Assuntos
Acetatos , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Metabolômica , SARS-CoV-2 , Ureia , Vacinação , Humanos , Feminino , Gravidez , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/sangue , Metabolômica/métodos , SARS-CoV-2/imunologia , Adulto , Ureia/sangue , Vacinas contra COVID-19/imunologia , Metaboloma , Vacina de mRNA-1273 contra 2019-nCoV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA