RESUMO
Accurate, real-time identification and display of critical anatomic structures, such as the nerve and vasculature structures, are critical for reducing complications and improving surgical outcomes. Human vision is frequently limited in clearly distinguishing and contrasting these structures. We present a novel imaging system, which enables noninvasive visualization of critical anatomic structures during surgical dissection. Peripheral nerves are visualized by a snapshot polarimetry that calculates the anisotropic optical properties. Vascular structures, both venous and arterial, are identified and monitored in real-time using a near-infrared laser-speckle-contrast imaging. We evaluate the system by performing in vivo animal studies with qualitative comparison by contrast-agent-aided fluorescence imaging.
RESUMO
Radiofrequency ablation (RFA) is an important standard therapy for cardiac arrhythmias, but direct monitoring of tissue treatment is currently lacking. We demonstrate an RFA catheter integrated with polarization sensitive optical coherence tomography (PSOCT) for directly monitoring the RFA process in real time. The integrated RFA/OCT catheter was modified from a standard clinical RFA catheter and includes a miniature forward-viewing cone-scanning OCT probe. The PSOCT system was validated with a quarter-wave plate while the RFA function of the integrated catheter was validated by comparing lesion sizes with those made with an unmodified RFA catheter. Additionally, the integrated catheter guided catheter-tissue apposition and monitored RFA lesion formation in cardiac tissue in real time. The results show that catheter-tissue contact can be characterized by observing the features of the blood and tissue in the acquired OCT images and that RFA lesion formation can be confirmed by monitoring the change in phase retardance in the acquired PSOCT images. This system demonstrates the feasibility of an integrated RFA/OCT catheter to deliver RF energy and image the cardiac wall simultaneously and justifies further research into use of this technology to aid RFA therapy for cardiac arrhythmias.
RESUMO
Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 µm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.
RESUMO
Label-free microfluidic cytometry is of increasing interest for single cell analysis due to its advantages of high-throughput, miniaturization, as well as noninvasive detection. Here we develop a next generation label-free light-sheet microfluidic cytometer for single cell analysis by two-dimensional (2D) light scattering measurements. Our cytometer integrates light sheet illumination with a disposable hydrodynamic focusing unit, which can achieve 3D hydrodynamic focusing of a sample fluid to a diameter of 19 micrometer without microfabrication. This integration also improves the signal to noise ratio (SNR) for the acquisition of 2D light scattering patterns from label-free cells. Particle sizing with submicron resolution is achieved by our light-sheet flow cytometer, where Euclidean distance-based similarity measures are performed. Label-free, automatic classification of senescent and normal cells is achieved with a high accuracy rate by incorporating our light-sheet flow cytometry with support vector machine (SVM) algorithms. Our light-sheet microfluidic cytometry with a microfabrication-free hydrodynamic focusing unit may find wide applications for automatic and label-free clinical diagnosis.
RESUMO
Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.
RESUMO
Microscopic tumor cell foci left in a patient after surgery significantly increase the chance of cancer recurrence. However, fluorescence microscopes used for intraoperative navigation lack the necessary sensitivity for imaging microscopic disease and are too bulky to maneuver within the resection cavity. We have developed a scalable chip-scale fluorescence contact imager for detecting microscopic cancer in vivo and in real-time. The imager has been characterized under simulated in vivo conditions using ex vivo samples, providing strong evidence that our device can be used in vivo. Angle-selective gratings enhance the resolution of the imager without impacting its physical size. We demonstrate detection of cancer cell clusters containing as few as 25 HCC1569 breast cancer cells and 400 LNCaP prostate cancer cells with integration times of only 50 ms and 70 ms, respectively. A cell cluster recognition algorithm is used to achieve both a sensitivity and specificity of 92 % for HCC1569 cell samples, indicating the reliability of the imager. The signal-to-noise ratio (SNR) degradation with increased separation is only 1.5 dB at 250 µm. Blood scattering and absorption reduce the SNR by less than 2 dB for typical concentrations. Moreover, HER2+ breast cancer tissue taken from a patient is distinguished from normal breast tissue with an integration time of only 75 ms.
RESUMO
In this work we introduce a modified form of laser speckle imaging (LSI) referred to as affixed transmission speckle analysis (ATSA) that uses a single coherent light source to probe two physiological signals: one related to pulsatile vascular expansion (classically known as the photoplethysmographic (PPG) waveform) and one related to pulsatile vascular blood flow (named here the speckle plethysmographic (SPG) waveform). The PPG signal is determined by recording intensity fluctuations, and the SPG signal is determined via the LSI dynamic light scattering technique. These two co-registered signals are obtained by transilluminating a single digit (e.g. finger) which produces quasi-periodic waveforms derived from the cardiac cycle. Because PPG and SPG waveforms probe vascular expansion and flow, respectively, in cm-thick tissue, these complementary phenomena are offset in time and have rich dynamic features. We characterize the timing offset and harmonic content of the waveforms in 16 human subjects and demonstrate physiologic relevance for assessing microvascular flow and resistance.
RESUMO
Photodynamic antimicrobial chemotherapy (PACT) is considered a promising alternative to conventional antibiotic approach. We have previously developed a novel PS containing five lysine amino acids, pentalysine-ß-carbonylphthalocyanine Zinc (ZnPc(Lys)5), which in the presence of light, is highly toxic against a range of bacterial strains, including hospital isolated, drug resistant Acinetobacter baumannii. Here, we study the effect of light fluence of the two light sources on the PACT potency of ZnPc(Lys)5. We observed that an exposure of E.coli to a red LED light for only 2 seconds (light fluence of 0.15 J/cm2) in the presence of ZnPc(Lys)5 significantly eradicated 80% of the E.coli. We further demonstrated that a light fluence of 4.5 J/cm2 from a household light source induced a noticeable photodynamic effect in vitro and in vivo animal model. This study points to a new research direction of reducing light illumination time by increasing potency of PS.
RESUMO
We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (-0.43 ± 0.31 mm and -0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation.
RESUMO
[This corrects the article on p. 4210 in vol. 7, PMID: 27867726.].
RESUMO
Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.
RESUMO
Diffuse reflectance spectroscopy (DRS) has been used in murine studies to quantify tumor perfusion and therapeutic response. These studies frequently use inhaled isoflurane anesthesia, which depresses the respiration rate and results in the desaturation of arterial oxygen saturation, potentially affecting tissue physiological parameters. However, there have been no controlled studies quantifying the effect of isoflurane anesthesia on DRS-derived physiological parameters of murine tissue. The goal of this study was to perform DRS on Balb/c mouse (n = 10) tissue under various anesthesia conditions to quantify effects on tissue physiological parameters, including total hemoglobin concentration, tissue oxygen saturation, oxyhemoglobin and reduced scattering coefficient. Two independent variables were manipulated including metabolic gas type (pure oxygen vs. medical air) and isoflurane concentration (1.5 to 4.0%). The 1.5% isoflurane and 1 L/min oxygen condition most closely mimicked a no-anesthesia condition with oxyhemoglobin concentration within 89% ± 19% of control. The time-dependent effects of isoflurane anesthesia were tested, revealing that anesthetic induction with 4.0% isoflurane can affect DRS-derived physiological parameters up to 20 minutes post-induction. Finally, spectroscopy with and without isoflurane anesthesia was compared for colon tumor Balb/c-CT26 allografts (n = 5) as a representative model of subcutaneous murine tumor allografts. Overall, isoflurane anesthesia yielded experimentally-induced depressed oxyhemoglobin, and this depression was both concentration and time dependent. Investigators should understand the dynamic effects of isoflurane on tissue physiological parameters measured by DRS. These results may guide investigators in eliminating, limiting, or managing anesthesia-induced physiological changes in DRS studies in mouse models.
RESUMO
Noninvasive, direct measurement of local muscle blood flow in humans remains limited. Diffuse correlation spectroscopy (DCS) is an emerging technique to measure regional blood flow at the microvascular level. In order to better understand the strengths and limitations of this novel technique, we performed a validation study by comparing muscle blood flow changes measured with DCS and Doppler ultrasound during exercise. Nine subjects were measured (all males, 27.4 ± 2.9 years of age) for a rhythmic handgrip exercise at 20% and 50% of individual maximum voluntary contraction (MVC), followed by a post-exercise recovery. The results from DCS and Doppler ultrasound were highly correlated (R = 0.99 ± 0.02). DCS was more reliable and less susceptible to motion artifact.
RESUMO
Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multi-exposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables.
RESUMO
Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.
RESUMO
We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.
RESUMO
The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light bands near 700nm that are more dominated by ambient lights.
RESUMO
Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of µs'(λ)/µa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.
RESUMO
Early detection of ovarian cancer is only achieved in around 20% of women due to lack of effective screening. We propose a method for surveillance of high risk women based on a microendoscope introduced transvaginally to image the fallopian tubes and ovaries. This requires extreme miniaturization of the optics and catheter sheath. We describe the design of a falloposcope that combines optical coherence tomography (OCT) and wide field imaging into a sub-1 mm diameter package. We characterize the systems and show that they provide contrast on ex-vivo samples of ovary and fallopian tube. In addition, we show the mechanical performance of the endoscope in an anatomically correct model of the female reproductive tract.
RESUMO
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), affects over 1 million Americans and 2 million Europeans, and the incidence is increasing worldwide. While these diseases require unique medical care, the differentiation between UC and CD lacks a gold standard, and therefore relies on long term follow up, success or failure of existing treatment, and recurrence of the disease. Here, we present colonoscopy-coupled fiber optic probe-based Raman spectroscopy as a minimally-invasive diagnostic tool for IBD of the colon (UC and Crohn's colitis). This pilot in vivo study of subjects with existing IBD diagnoses of UC (n = 8), CD (n = 15), and normal control (n = 8) aimed to characterize spectral signatures of UC and CD. Samples were correlated with tissue pathology markers and endoscopic evaluation. The collected spectra were processed and analyzed using multivariate statistical techniques to identify spectral markers and discriminate IBD and disease classes. Confounding factors including the presence of active inflammation and the particular colon segment measured were investigated and integrated into the devised prediction algorithm, reaching 90% sensitivity and 75% specificity to CD from this in vivo data set. These results represent significant progress towards improved real-time classification for accurate and automated in vivo detection and discrimination of IBD during colonoscopy procedures.