Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 82(3): 585-597.e11, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120648

RESUMO

Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Culina/genética , Células HEK293 , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
2.
Clin Chem Lab Med ; 58(9): 1499-1507, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32286240

RESUMO

Background: Anti-mitochondrial autoantibodies (AMA) detected by indirect immunofluorescence (IIF) on rodent tissues are the diagnostic marker of primary biliary cholangitis (PBC). However, up to 15% of patients with PBC are AMA-negative by IIF. In the effort to close the serological gap and improve the diagnostic sensitivity of PBC testing, recently, novel autoantibodies specific for PBC, such as kelch-like 12 (KLHL12, KLp epitope) and hexokinase 1 (HK1) have been described. In this study, we evaluated the autoantibody profile in a large cohort of PBC patients and in patients with other liver disease, including anti-HK1 and anti-KLp autoantibodies. Methods: Sera of 194 PBC patients (126 AMA-IIF-positive and 68 AMA-IIF-negative) and 138 disease controls were tested for a panel of PBC-specific antibodies (MIT3, sp100, gp210, HK1, KLp) using a new automated particle-based multi-analyte technology (PMAT) assay on the Aptiva instrument (Inova). Results: Selecting a cutoff yielding a specificity of >95% for all the markers, the sensitivity for anti-MIT3, anti-sp100, anti-gp210, anti-HK1 and anti-KLp in the PBC AMA-IIF-negative cohort was 20.6%, 16.2%, 23.5%, 22.0%, 17.6 and 13.2%, respectively. Six out of the 68 (8.8%) AMA-IIF negative sera were positive for anti-HK1 or anti-KLp alone. Using these new markers in addition to anti-MIT3, anti-sp100 and anti-gp210, the overall sensitivity in this cohort of AMA-IIF-negative patients increased from 53% to 61.8%, reducing the serological gap in AMA-negative PBC patients. Conclusions: PBC antibody profiling, made possible by the new Aptiva-PMAT technology, allows recognition of a higher number of AMA-negative PBC patients than conventional immunoassays and may represent a useful tool to evaluate the prognostic significance of autoantibody association in PBC patients.


Assuntos
Autoanticorpos/sangue , Autoanticorpos/química , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/diagnóstico , Automação , Biomarcadores/sangue , Estudos de Casos e Controles , Humanos , Fígado/patologia , Microscopia de Fluorescência/métodos , Curva ROC , Sensibilidade e Especificidade
3.
Biochem Soc Trans ; 44(2): 601-5, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068976

RESUMO

Ubiquitination is a post-translational modification that targets proteins for degradation but can also regulate other cellular processes such as endocytosis, trafficking and DNA repair. We investigate ubiquitination of the dopamine D4receptor (D4R) which belongs to the superfamily of G protein-coupled receptors (GPCR). Several polymorphic variants of the D4R exist, which differ in the number of 16-amino acid repeats in the third intracellular loop (IC3) of the receptor. The functional role of this polymorphic region is not known but persons with the seven-repeat allele show a predisposition to develop attention deficit hyperactivity disorder (ADHD). We identified a protein, KLHL12, which specifically interacts with this polymorphic region and enhances ubiquitination of the D4R. We have tested the influence of KLHL12 on the ubiquitination of the most common D4R polymorphic variants and found that KLHL12 strongly promotes ubiquitination of the two- and four-repeat variant but has hardly any effect on ubiquitination of the seven-repeat D4R. This suggests that differential ubiquitination of the D4R may have functional implications. Moreover, we were able to demonstrate that KLHL12-mediated D4R ubiquitination does not lead to receptor degradation. Next, we aimed to identify specific residues in the sequence of D4R which undergo ubiquitination and observed that the lysine-less receptor mutant is still ubiquitinated. Subsequently, we have tested the hypothesis whether KLHL12 could promote ubiquitination on non-lysine residues of the D4R. The importance of the cysteine and serine/threonine residues in the ubiquitination process of the receptor was examined and the obtained results confirmed that D4R can be ubiquitinated on non-lysine residues. In this review we summarize our data on D4R ubiquitination and put this in the light of other GPCR ubiquitination studies.


Assuntos
Receptores de Dopamina D4/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Receptores de Dopamina D4/química , Ubiquitinação
4.
Arterioscler Thromb Vasc Biol ; 34(2): 251-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334870

RESUMO

OBJECTIVE: One of the major risk factors for atherosclerosis is the plasma level of low-density lipoprotein (LDL), which is a product of very-low-density lipoprotein (VLDL). Hepatic apolipoprotein B100 (apoB100) is the essential component that provides structural stability to VLDL particles. Newly translated apoB100 is partially lipidated in the endoplasmic reticulum (ER), forming nascent apoB100-VLDL particles. These particles are further modified to form fully mature VLDLs in the Golgi apparatus. Therefore, the transport of nascent VLDL from the ER to the Golgi represents a critical step during VLDL maturation and secretion and in regulating serum LDL cholesterol levels. Our previous studies showed that apoB100 exits the ER in coat complex II vesicles (COPII), but the cohort of related factors that control trafficking is poorly defined. APPROACH AND RESULTS: Expression levels of Kelch-like protein 12 (KLHL12), an adaptor protein known to assist COPII-dependent transport of procollagen, were manipulated by using a KLHL12-specific small interfering RNA and a KLHL12 expression plasmid in the rat hepatoma cell line, McArdle RH7777. KLHL12 knockdown decreased the secreted and intracellular pools of apoB100, an effect that was attenuated in the presence of an autophagy inhibitor. KLHL12 knockdown also significantly reduced secretion of the most lipidated apoB100-VLDL species and led to the accumulation of apoB100 in the ER. Consistent with these data, KLHL12 overexpression increased apoB100 recovery and apoB100-VLDL secretion. Images obtained from confocal microscopy revealed colocalization of apoB100 and KLHL12, further supporting a direct link between KLHL12 function and VLDL trafficking from the ER. CONCLUSIONS: KLHL12 plays a critical role in facilitating the ER exit and secretion of apoB100-VLDL particles, suggesting that KLHL12 modulation would influence plasma lipid levels.


Assuntos
Apolipoproteína B-100/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas dos Microfilamentos/metabolismo , Vesículas Secretórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Proteínas dos Microfilamentos/genética , Transporte Proteico , Interferência de RNA , Ratos , Transfecção
5.
Biomedicines ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453551

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by the presence of antimitochondrial and antinuclear antibodies in patients' serum. Here, we analyzed the reactivity of autoantibodies against a novel autoantigen, kelch-like 12 (KLHL12) protein, in a cohort of 138 PBC and 90 non-PBC patients. Additionally, we compared the reactivity of KLHL12 with antinuclear envelope antibodies: anti-gp210, anti-p62, and anti-LBR. Commercially available kits and an 'in-house' ELISA were used in the studies. Antinuclear envelope antibodies were detected in 65% of PBC patients and the presence of these antibodies was observed more frequently in patients diagnosed with later stages (III/IV) of PBC, according to Ludwig's classification (p < 0.05) and were found to correlate with a higher concentration of bilirubin. Overall, anti-KLHL12 antibodies were found more frequently in PBC patients than in non-PBC controls (p < 0.001). Anti-KLHL12 antibodies were detected in 36% of the tested PBC cohort, including PBC patients negative for antimitochondrial antibodies. Presence of anti-KLHL12 was also associated with a higher concentration of bilirubin and correlated with fibrosis (p < 0.05). Anti-KLHL12 antibodies were detected in 30% of PBC individuals positive for antinuclear envelope antibodies, while anti-KLHL12 and antinuclear envelope antibodies were found in 17% of all PBC cases. Concluding, our data confirm that antibodies against the KLHL12 protein are highly specific for PBC and when used in combination with other markers, may significantly increase the diagnosis of PBC.

6.
Cell Signal ; 28(8): 1001-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155323

RESUMO

Dopamine receptors are G protein-coupled receptors involved in regulation of cognition, learning, movement and endocrine signaling. The action of G protein-coupled receptors is highly regulated by multifunctional proteins, such as ß-arrestins which can control receptor desensitization, ubiquitination and signaling. Previously, we have reported that ß-arrestin 2 interacts with KLHL12, a BTB-Kelch protein which functions as an adaptor in a Cullin3-based E3 ligase complex and promotes ubiquitination of the dopamine D4 receptor. Here, we have investigated the molecular basis of the interaction between KLHL12 and ß-arrestins and questioned its functional relevance. Our data demonstrate that ß-arrestin 1 and ß-arrestin 2 bind constitutively to the most common dopamine D4 receptor polymorphic variants and to KLHL12 and that all three proteins can interact within a single macromolecular complex. Surprisingly, stimulation of the receptor has no influence on the association between these proteins or their cellular distribution. We found that Cullin3 also interacts with both ß-arrestins but has no influence on their ubiquitination. Knockout of one of the two ß-arrestins hampers neither interaction between the dopamine D4 receptor and KLHL12, nor ubiquitination of the receptor. Finally, our results indicate that p44/42 MAPK phosphorylation, the signaling pathway which is often regulated by ß-arrestins is not influenced by KLHL12, but seems to be exclusively mediated by Gαi protein upon dopamine D4 receptor stimulation.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Receptores de Dopamina D4/metabolismo , beta-Arrestinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Culina/metabolismo , Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Repetição Kelch , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA