Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(9): 1183-1193, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848321

RESUMO

Rationale: In the EOLIA (ECMO to Rescue Lung Injury in Severe ARDS) trial, oxygenation was similar between intervention and conventional groups, whereas [Formula: see text]e was reduced in the intervention group. Comparable reductions in ventilation intensity are theoretically possible with low-flow extracorporeal CO2 removal (ECCO2R), provided oxygenation remains acceptable. Objectives: To compare the effects of ECCO2R and extracorporeal membrane oxygenation (ECMO) on gas exchange, respiratory mechanics, and hemodynamics in animal models of pulmonary (intratracheal hydrochloric acid) and extrapulmonary (intravenous oleic acid) lung injury. Methods: Twenty-four pigs with moderate to severe hypoxemia (PaO2:FiO2 ⩽ 150 mm Hg) were randomized to ECMO (blood flow 50-60 ml/kg/min), ECCO2R (0.4 L/min), or mechanical ventilation alone. Measurements and Main Results: [Formula: see text]o2, [Formula: see text]co2, gas exchange, hemodynamics, and respiratory mechanics were measured and are presented as 24-hour averages. Oleic acid versus hydrochloric acid showed higher extravascular lung water (1,424 ± 419 vs. 574 ± 195 ml; P < 0.001), worse oxygenation (PaO2:FiO2 = 125 ± 14 vs. 151 ± 11 mm Hg; P < 0.001), but better respiratory mechanics (plateau pressure 27 ± 4 vs. 30 ± 3 cm H2O; P = 0.017). Both models led to acute severe pulmonary hypertension. In both models, ECMO (3.7 ± 0.5 L/min), compared with ECCO2R (0.4 L/min), increased mixed venous oxygen saturation and oxygenation, and improved hemodynamics (cardiac output = 6.0 ± 1.4 vs. 5.2 ± 1.4 L/min; P = 0.003). [Formula: see text]o2 and [Formula: see text]co2, irrespective of lung injury model, were lower during ECMO, resulting in lower PaCO2 and [Formula: see text]e but worse respiratory elastance compared with ECCO2R (64 ± 27 vs. 40 ± 8 cm H2O/L; P < 0.001). Conclusions: ECMO was associated with better oxygenation, lower [Formula: see text]o2, and better hemodynamics. ECCO2R may offer a potential alternative to ECMO, but there are concerns regarding its effects on hemodynamics and pulmonary hypertension.


Assuntos
Lesão Pulmonar Aguda , Hipertensão Pulmonar , Animais , Dióxido de Carbono , Ácido Clorídrico , Ácido Oleico , Respiração Artificial/métodos , Suínos
2.
Extrem Physiol Med ; 5: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26929820

RESUMO

Haemoglobin is the blood's oxygen carrying pigment and is encapsulated in red blood corpuscles. The concentration of haemoglobin in blood is dependent on both its total mass in the circulation (tHb-mass) and the total plasma volume in which it is suspended. Aerobic capacity is defined as the maximum amount of oxygen that can be consumed by the body per unit time and is one measure of physical fitness. Observations in athletes who have undergone blood doping or manipulation have revealed a closer relationship between physical fitness (aerobic capacity) and total haemoglobin mass (tHb-mass) than with haemoglobin concentration ([Hb]). Anaemia is defined by the World Health Organisation (WHO) as a haemoglobin concentration of <130 g/L for men and <120 g/L for women. Perioperative anaemia is a common problem and is associated with increased mortality and morbidity following surgery. Aerobic capacity is also associated with outcome following major surgery, with less fit patients having a higher incidence of mortality and morbidity after surgery. Taken together, these observations suggest that targeted preoperative elevation of tHb-mass may raise aerobic capacity both directly and indirectly (by augmenting preoperative exercise initiatives- 'prehabilitation') and thus improve postoperative outcome. This notion in turn raises a number of questions. Which measure ([Hb] or tHb-mass) has the most value for the description of oxygen carrying capacity? Which measure has the most utility for targeting therapies to manipulate haemoglobin levels? Do the newer agents being used for blood manipulation (to increase tHb-mass) in elite sport have utility in the clinical environment? This review explores the literature relating to blood manipulation in elite sport as well as the relationship between perioperative anaemia, physical fitness and outcome following surgery, and suggests some avenues for exploring this area further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA