Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(13): e110060, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642376

RESUMO

Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.


Assuntos
Lipoilação , Vírus de Plantas , Nicotiana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
EMBO J ; 40(16): e107660, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34254679

RESUMO

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.


Assuntos
Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/virologia , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Nicotiana/genética
3.
Plant Biotechnol J ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166471

RESUMO

RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.

4.
New Phytol ; 234(2): 618-633, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075654

RESUMO

Posttranslational modifications (PTMs) play important roles in virus-host interplay. We previously demonstrated that Barley stripe mosaic virus (BSMV) γb protein is phosphorylated by different host kinases to support or impede viral infection. However, whether and how other types of PTMs participate in BSMV infection remains to be explored. Here, we report that S-adenosylmethionine decarboxylase 3 (SAMDC3) from Nicotiana benthamiana or wheat (Triticum aestivum) interacts with γb. BSMV infection induced SAMDC3 expression. Overexpression of SAMDC3 led to the destabilization of γb and reduction in viral infectivity, whereas knocking out NbSAMDC3 increased susceptibility to BSMV. NbSAMDC3 positively regulated the 26S proteasome-mediated degradation of γb via its PEST domain. Further mechanistic studies revealed that γb can be ubiquitinated in planta and that NbSAMDC3 promotes the proteasomal degradation of γb by increasing γb ubiquitination. We also found evidence that ubiquitination occurs at nonlysine residues (Ser-133 and Cys-144) within γb. Together, our results provide a function for SAMDC3 in defence against BSMV infection through targeting of γb abundance, which contributes to our understanding of how a plant host deploys the ubiquitin-proteasome system to mount defences against viral infections.


Assuntos
Hordeum , Vírus de Plantas , Adenosilmetionina Descarboxilase/metabolismo , Hordeum/metabolismo , Vírus de Plantas/metabolismo , Ubiquitinação , Proteínas Virais/metabolismo
5.
New Phytol ; 218(4): 1570-1585, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453938

RESUMO

The Barley stripe mosaic virus (BSMV) γb protein is a viral suppressor of RNA silencing (VSR) and symptom determinant. However, it is unclear how post-translational modification affects the different functions of γb. Here, we demonstrate that γb is phosphorylated at Ser-96 by a PKA-like kinase in vivo and in vitro. Mutant viruses containing a nonphosphorylatable substitution (BSMVS96A or BSMVS96R ) exhibited reduced viral accumulation in Nicotiana benthamiana due to transient induction of the cell death response that constrained the virus to necrotic areas. By contrast, a BSMVS96D mutant virus that mimics γb phosphorylation spread similarly to the wild-type virus. Furthermore, the S96A mutant had reduced local and systemic γb VSR activity due to having compromised its binding activity to 21-bp dsRNA. However, overexpression of other VSRs in trans or in cis failed to rescue the necrosis induced by BSMVS96A , demonstrating that suppression of cell death by γb phosphorylation is functionally distinct from its RNA silencing suppressor activities. These results provide new insights into the function of γb phosphorylation in regulating RNA silencing and the BSMV-induced host cell death response, and contribute to our understanding of how the virus optimizes the balance between viral replication and virus survival in the host plants during virus infection.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/citologia , Nicotiana/virologia , Vírus de Plantas/patogenicidade , Interferência de RNA , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Morte Celular , Mutação/genética , Fenótipo , Fosforilação , Fosfosserina/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas Virais/química , Replicação Viral
6.
Viruses ; 16(1)2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257796

RESUMO

Wheat is an essential cereal crop for the economy and food safety of Kazakhstan. In the present work, a screening of wheat and barley from different regions of Kazakhstan was conducted using newly developed specific primers for reverse transcription PCR and loop-mediated isothermal amplification (LAMP) assays. In total, 82 and 19 of 256 samples of wheat and barley tested positive for wheat streak mosaic virus (WSMV) and barley stripe mosaic virus (BSMV), respectively. A phylogenetic analysis using two independent methods revealed that most of the analyzed isolates had a European origin. Molecular data on the distribution and diversity of cereal viruses in Kazakhstan were obtained for the first time and will help lay a foundation for the implementation of genetics and genomics in wheat phyto-epidemiology in the country.


Assuntos
Hordeum , Vírus de Plantas , Potyviridae , Cazaquistão , Filogenia , Grão Comestível
7.
Int J Biol Macromol ; 96: 392-402, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013006

RESUMO

Glycation of ocular lens proteins plays a vital role in the development of diabetic cataract. In order to investigate the role of glycation in cataractogenesis, the extent of glycation of human γB-crystallin was determined by an in vitro glycation study in a solution of high glucose content for upto 28days. The glycated protein has been purified and the formation of advanced glycation end products (AGEs) has been monitored spectroscopically. Size exclusion chromatographic studies showed that the covalent intermolecular crosslinking in the dimer formed was not due to disulfide bond formation. MALDI-TOF spectroscopy was employed to determine the number of glucose moieties attached to the protein due to glycation.


Assuntos
gama-Cristalinas/metabolismo , Fenômenos Biofísicos , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , gama-Cristalinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA