Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(32)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35487193

RESUMO

Dendritic fibrous nanosilica (DFNS) is a suitable nano-carrier for loading pesticides with radially oriented pores and a large surface area. The microemulsion method is standard method to prepare DFNS, and 1-pentanol is taken to replace cyclohexane as an oil solvent due to its high stability and nontoxic property. The results showed that the volume ratio of 1-pentanol (oil) to water (O/W) and the molar ratio of hexadecyltrimethylammonium bromide (CTAB) to tetraethylorthosilicate (TEOS) had effected on morphology and adsorption properties of DFNS in the water-CTAB-1-pentanol-ethanol-trimethylbenzene (TMB) microemulsion system. DFNS with bicontinuous concentric lamellar morphologies can be synthesized in this microemulsion at the meager O/W volume ratio (0.025-0.045). It features a tight mesoporous structure with a thin dendritic fibrous in 0.03 to 0.04 O/W volume ratio. The particle sizes, surface areas, and porosity of DFNS were positively correlated with the addition of the silica precursor TEOS. The size of DFNS increased from 123 to about 220 nm with the CTAB/TEOS molar ratio decreasing from 0.119 to 0.050. When the molar ratio of CTAB to TEOS  = 0.119, DFNS has a smaller particle size (123 nm) with a larger surface area and abundant honeycomb mesopores; the low O/W volume ratio strategy provides theoretical support for the industrialization development of DFNS and nano-pesticides, which plays a profound role in promoting the sustainable development of pesticide reduction, efficiency and green agriculture.

2.
Bioprocess Biosyst Eng ; 45(8): 1331-1347, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35792928

RESUMO

The domination of high-cost organic acids over other 3-hydroxyvalerate (3HV) precursors due to the wide preference among polyhydroxyalkanoates (PHA)-producing bacteria has limited the development of diverse poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production processes. 1-pentanol is a low-cost 3HV precursor but is rarely employed due to the relatively low tolerance among PHA-producing bacteria. This study demonstrated P(3HB-co-3HV) production with manipulable and reproducible 3HV composition and 3HV yield from palm olein and 1-pentanol. Cupriavidus malaysiensis USMAA2-4ABH16 is the transformant strain with acquired lipase genes that retains the high tolerance towards 1-pentanol of its wild-type, with a preference for 1-pentanol over valeric acid indicated by the sixfold higher 3HV yield than that from valeric acid. C. malaysiensis USMAA2-4ABH16 was able to tolerate up to 0.15 wt% C 1-pentanol. Upon optimization using response surface methodology, 0.41‒0.52 g/g P(3HB-co-3HV) yield and 72‒89 wt% PHA content was achieved for 7, 9, 12 and 16 mol% 3HV, with 3HV yields of 0.30 g/g, 0.26 g/g, 0.23 g/g and 0.23 g/g, respectively. Up-scaling batch production by adopting the optimized concentrations of substrates for 12 mol% 3HV resulted in reproducible 3HV composition and 3HV yield on a 120-fold larger scale. The P(3HB-co-12 mol% 3HV) produced displayed higher flexibility than polypropylene and P(3HB-co-3HV) produced from different carbon sources. C. malaysiensis USMAA2-4ABH16 could be practically applicable for sustainable and economically feasible P(3HB-co-3HV) production on an industrial scale from used palm olein with relatively similar oleic acid content with palm olein and 1-pentanol, with higher 3HV compositions achievable through fed-batch strategies owing to its high 1-pentanol tolerance.


Assuntos
Cupriavidus necator , Cupriavidus , Poli-Hidroxialcanoatos , Carbono , Etanol , Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres/química
3.
Se Pu ; 42(5): 481-486, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736392

RESUMO

Ibandronate sodium, a third-generation diphosphate drug used worldwide to treat osteoporosis, has the advantages of convenient use, low toxicity, and significant therapeutic effects. However, the residual organic solvents in the synthesis process of sodium ibandronate not only have a negative impact on the efficacy of the drug, but also lead to a decrease in drug stability. Moreover, if the residual amounts of these solvents exceed safety standards, they may pose serious threats to human health. This study successfully established a convenient and efficient method based on headspace-gas chromatography (HS-GC) for the simultaneous determination of five residual solvents (methanol, acetone, benzene, toluene, 1-pentanol) in the raw materials of ibandronate sodium. The results indicated that satisfactory analytical performance can be achieved by using DB-624 capillary column (30 m×0.32 mm×1.8 µm) and a flame ionization detector in conjunction with headspace autosampling and a temperature program. The specific operating conditions included an initial temperature of 40 ℃, with a hold of 2 min, followed by a temperature ramp first to 200 ℃ at a rate of 5 ℃/min and then to 240 ℃ at a rate of 20 ℃/min, with a hold of 5 min. Nitrogen with a flow rate of 1 mL/min and split ratio of 14∶1 was used as the carrier gas. The headspace vial temperature was maintained at 80 ℃, and the sample equilibration time was 20 min. Under the established analytical conditions, good linear relationships were obtained between the mass concentrations of methanol (72-216 µg/mL), acetone (120-360 µg/mL), benzene (0.048-0.144 µg/mL), toluene (21.36-64.08 µg/mL), and 1-pentanol (120-360 µg/mL) and their corresponding peak areas, with correlation coefficients (r) greater than 0.990. The limits of detection for these solvents were 2.88, 0.011, 0.90, 0.24, and 0.024 ng/mL, respectively, with limits of quantification of 11.5, 0.043, 3.6, 0.96, and 0.096 ng/mL, respectively. Furthermore, the recoveries of these solvents ranged from 86.3% to 101.9%, with relative standard deviations (RSDs, n=3) of less than 2.49%. The proposed method is simple, accurate, reliable, and suitable for the rapid and simultaneous determination of five residual solvents in the raw materials of ibandronate sodium. This study has important practical significance in improving drug safety and ensuring public health.


Assuntos
Ácido Ibandrônico , Solventes , Cromatografia Gasosa/métodos , Solventes/química , Ácido Ibandrônico/análise , Difosfonatos/análise , Contaminação de Medicamentos
4.
Pest Manag Sci ; 80(6): 3010-3021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38318950

RESUMO

BACKGROUND: Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS: Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION: Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.


Assuntos
Aspergillus niger , Doenças das Plantas , Pyrus , Compostos Orgânicos Voláteis , Pyrus/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Agentes de Controle Biológico/farmacologia
5.
Environ Sci Pollut Res Int ; 30(28): 72114-72129, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36175726

RESUMO

Researchers are examining the possibilities for alternative fuel research as a fossil fuel replacement in light of global energy insecurity and other urgent challenges like global warming, severe emissions, and growing industrialization. This research uses 1-pentanol as a low reactivity fuel and Jatropha biodiesel as a high reactivity fuel to explore the reactivity-controlled compression ignition engine characteristics. A water-cooled single-cylinder engine is used in an experiment with varied loads of 25%, 50%, and 75% at a constant speed of 2000 rpm to examine the effects of operational parameters (i.e., (23 bTDC, 25 bTDC, and 27 bTDC) and (400 bar, 500 bar, and 600 bar)). The fuzzy-based Taguchi approach predicts operational parameters, including fuel injection time, fuel injection pressure, and engine load. Utilizing this ideal model, one may increase brake thermal efficiency and braking power while minimizing unburned hydrocarbon and nitrogen oxide emissions. An L20 orthogonal array is used to analyze the effects of various variables on an engine running on B20/1-pentanol fuel, including engine load, fuel injection timing, and fuel injection pressure. Multiple models are generated and verified with the use of experimental findings. Compared to other operating parameters, for reducing oxides of nitrogen, hydrocarbons, and brake-specific energy consumption maximally, engine load of 75%, FIP of 400 bar, and FIT of 23 bTDC are optimal based on the greatest MPCI value of 0.802.


Assuntos
Jatropha , Emissões de Veículos , Monóxido de Carbono/análise , Óxidos de Nitrogênio/análise , Hidrocarbonetos , Biocombustíveis , Gasolina
6.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215584

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) is the most studied short-chain-length polyhydroxyalkanoates (PHA) with high application importance in various fields. The domination of high-cost propionate and valerate over other 3-hydroxyvalerate (3HV) precursors owing to their wide preference among PHA-producing bacteria has hindered the development of diverse production processes. As alkyl alcohols are mainly produced from inexpensive starting materials through oxo synthesis, they contribute a cost-effective advantage over propionate and valerate. Moreover, alkyl alcohols can be biosynthesized from natural substrates and organic wastes. Despite their great potential, their toxicity to most PHA-producing bacteria has been the major drawback for their wide implementation as 3HV precursors for decades. Although the standard PHA-producing bacteria Cupriavidus necator showed promising alcohol tolerance, the 3HV yield was discouraging. Continuous discovery of alkyl alcohols-utilizing PHA-producing bacteria has enabled broader choices in 3HV precursor selection for diverse P(3HB-co-3HV) production processes with higher economic feasibility. Besides continuous effort in searching for promising wild-type strains, genetic engineering to construct promising recombinant strains based on the understanding of the mechanisms involved in alkyl alcohols toxicity and tolerance is an alternative approach. However, more studies are required for techno-economic assessment to analyze the economic performance of alkyl alcohol-based production compared to that of organic acids.

7.
J Biotechnol ; 337: 71-79, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34233208

RESUMO

The sustainability in polyhydroxyalkanoates (PHA) production is drawing increasing attention as the effort to increase the economic feasibility for commercialization pursues. Oleic acid is widely preferred by bacteria but its employment for PHA production makes sustainability rather dubious. This study showed promising poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] content of 68 wt % by lipase genes-harbouring Cupriavidus malaysiensis USMAA2-4 transformant from palm olein and 1-pentanol. High oleic acid content and low oil saturation caused palm olein to outperform crude palm oil, crude palm kernel oil and soybean oil due to its preference for oleic acid shown by previous screening. The transformant showed 8-fold and 40-fold higher lipase activity compared to C. necator H16 and its wild-type respectively. The transformant was unaffected by Co2+ but the growth of C. necator H16 was inversely proportional to Co2+ concentration and the employment of 1-pentanol also ceased its growth and PHA accumulation. Although the inhibitory effect of Fe2+, Cu2+ and Zn2+ at high molarity on LipA decreased PHA content of C. malaysiensis USMAA2-4 transformant by 23-24 wt %, the lipase activity was restorable with high molarity of Ca2+, thus resulted in higher PHA content. The transformant enabled the employment of low-cost 1-pentanol as the precursor for cost-effective PHA production and its preference for palm olein contributed to higher sustainability.


Assuntos
Cupriavidus , Poli-Hidroxialcanoatos , Hidroxibutiratos , Pentanóis
8.
Food Res Int ; 109: 72-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803494

RESUMO

The influence of high temperature modes (cooking in traditional clay stewpot (TS) and cooking in commercial ceramic electrical stewpot (CS)) and low temperature modes (cooking in electrical stewpot with Temperature Modulations, TM1-TM6) on chicken broth sensory evaluation and flavor profile was studied. Sensory evaluation results showed that chicken broth processed using TM1 had the best flavor with higher chicken meat-like and lower off-flavor scores. Gas chromatography-mass spectrometry (GC-MS) and GC-MS/olfactometry (GC-MS/O) results revealed that the TM1 samples had the most abundant odorants. The umami-taste components from TM1 samples such as umami free amino acids and inosine 5'-monophosphate (IMP) had the highest amount, 20.0 ±â€¯0.10 mg/g chicken broth and 17.19 ±â€¯0.58 µg/g chicken broth respectively. The relationship between sensory evaluation and odor-active compounds were evaluated by Partial Least Squares Regression (PLSR), and the PLSR analysis indicated that heptanal, benzaldehyde, (Z)-2-decenal, (E,E)-2,4-decadienal, 1-pentanol, 2-undecanone, 2-pentyl-furan and one unknown compound were significantly and positively correlated with chicken meat-like note. Whereas, fatty aroma were significantly and positively correlated with octanal, (E,E)-2,4-decadienal and 1-pentanol. (E,E)-2,4-Decadienal and 2-undecanone had a significant and negative correlation with off-flavor attribute.


Assuntos
Galinhas , Culinária/métodos , Temperatura Alta , Produtos da Carne/análise , Odorantes/análise , Álcoois/análise , Aldeídos/análise , Animais , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Olfatometria
9.
Food Chem ; 217: 531-541, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664669

RESUMO

The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance.


Assuntos
Brassica , Manipulação de Alimentos/métodos , Paladar , Cromatografia Gasosa-Espectrometria de Massas/métodos
10.
Food Res Int ; 100(Pt 2): 235-240, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888446

RESUMO

Purple sweet potato was fermented into alcoholic beverage. By using LC-MS analysis, 12 types of anthocyanins were found in the purple sweet potato alcoholic beverage (PSPFAB); these were based on cyanidin and peonidin as aglycones. The anthocyanins in young PSPFAB mainly consisted of acylates. The acylated anthocyanins, however, degraded gradually with aging. Cyanidin 3-sophoroside-5-glucoside and peonidin 3-sophoroside-5-glucoside were found to be major anthocyanins in the PSPFAB after two years of aging. Moreover, 52 kinds of volatile components were detected in PSPFAB by GC-MS analysis. Alcohol and ester substances constituted a major proportion of these volatile components of PSPFAB. After two years of aging, levels of high-alcohols such as 1-pentanol remarkably decreased to below the detection limit, while the level of total esters increased significantly. Such variation of aromas enriched and improved the flavor of PSPFAB.


Assuntos
Bebidas Alcoólicas/análise , Antocianinas/análise , Ipomoea batatas/química , Compostos Orgânicos Voláteis/análise , Cromatografia Líquida , Fermentação , Análise de Alimentos , Manipulação de Alimentos , Glucosídeos/análise , Espectrometria de Massas , Extratos Vegetais/análise
11.
Biotechnol Biofuels ; 9: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839590

RESUMO

BACKGROUND: The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv pretreatment is an attractive method for this purpose. However, as organosolv pretreatment uses high concentrations of organic solvents (>50 %), decreasing the concentration necessary for fractionation would help reduce processing costs. In this study, we sought to identify organic solvents capable of efficiently fractionating sorghum bagasse components at low concentrations. RESULTS: Five alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol) were used for organosolv pretreatment of sorghum bagasse at a concentration of 12.5 %. Sulfuric acid (1 %) was used as a catalyst. With 1-butanol and 1-pentanol, three fractions (black liquor, liquid fraction containing xylose, and cellulose-enriched solid fraction) were obtained after pretreatment. Two-dimensional nuclear magnetic resonance analysis revealed that the lignin aromatic components of raw sorghum bagasse were concentrated in the black liquor fraction, although the major lignin side-chain (ß-O-4 linkage) was lost. Pretreatment with 1-butanol or 1-pentanol effectively removed p-coumarate, some guaiacyl, and syringyl. Compared with using no solvent, pretreatment with 1-butanol or 1-pentanol resulted in two-fold greater ethanol production from the solid fraction by Saccharomyces cerevisiae. CONCLUSIONS: Our results revealed that a low concentration (12.5 %) of a highly hydrophobic solvent such as 1-butanol or 1-pentanol can be used to separate the black liquor from the solid and liquid fractions. The efficient delignification and visible separation of the lignin-rich fraction possible with this method simplify the fractionation of sorghum bagasse.

12.
Meat Sci ; 111: 130-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26398007

RESUMO

The volatile fraction of 30 Serrano dry-cured hams with different salt and intramuscular fat contents was investigated. In addition, the effect of high pressure processing (HPP) at 600 MPa for 6 min at 21°C on the volatile compounds of those hams was studied. One hundred volatile compounds were identified and their levels subjected to analysis of variance with ham chemical composition (aw, salt content, intramuscular fat content and salt in lean ratio) and HPP treatment as main effects. Chemical composition mainly affected the relative abundance of acids, alcohols, branched-chain aldehydes, ketones, benzene compounds, sulfur compounds and some miscellaneous compounds. Salt content and fat content influenced a greater number of volatile compounds than aw. High pressure processing had a significant effect on only 8 volatile compounds, with higher levels of methanethiol and sulfur dioxide in HPP-treated samples and higher levels of ethyl acetate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, dimethyl disulfide and dimethyl trisulfide in control untreated samples.


Assuntos
Manipulação de Alimentos , Qualidade dos Alimentos , Alimentos em Conserva/análise , Carne/análise , Sus scrofa , Matadouros , Análise de Variância , Animais , Fenômenos Químicos , Cruzamentos Genéticos , Gorduras na Dieta/análise , Membro Posterior , Músculo Esquelético/química , Pressão/efeitos adversos , Cloreto de Sódio na Dieta/análise , Espanha , Compostos Orgânicos Voláteis/análise , Água/análise
13.
Int J Food Microbiol ; 192: 58-65, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25306300

RESUMO

The effects of Lactobacillus plantarum UFLA CH3, Pediococcus acidilactici UFLA BFFCX 27.1, and Torulaspora delbrueckii UFLA FFT2.4 inoculation on the volatile compound profile of fermentation of Cucumeropsis mannii cotyledons were investigated. Different microbial associations were used as starters. All associations displayed the ability to ferment the cotyledons as judged by lowering the pH from 6.4 to 4.4-5 within 24h and increasing organic acids such as lactate and acetate. The population of lactic acid bacteria (LAB) and yeasts increased during fermentation. In the fermentation performed without inoculation (control), the LAB and yeast populations were lower than those in inoculated assays at the beginning, but they reached similar populations after 48 h. The Enterobacteriaceae population decreased during the fermentation, and they were not detected at 48 h in the L. plantarum UFLA CH3 and P. acidilactici UFLA BFFCX 27.1 (LP+PA) and L. plantarum UFLA CH3, P. acidilactici UFLA BFFCX 27.1, and T. delbrueckii UFLA FFT2.4 (LP+PA+TD) samples. The assays inoculated with the yeast T. delbrueckii UFLA FFT2.4 exhibited the majority of volatile compounds (13 compounds) characterized by pleasant notes. The LP+PA+TD association seemed to be appropriate to ferment C. mannii cotyledons. It was able to control the Enterobacteriaceae population, and achieved high concentrations of esters and low concentrations of aldehydes and ketones.


Assuntos
Cotilédone/metabolismo , Cucurbitaceae/metabolismo , Fermentação , Microbiologia Industrial , Enterobacteriaceae/fisiologia , Técnicas In Vitro , Lactobacillus plantarum/metabolismo , Pediococcus/metabolismo , Pediococcus/fisiologia , Torulaspora/metabolismo , Torulaspora/fisiologia , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA