Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 95(12): 1708-1717, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545117

RESUMO

Purpose: To evaluate the usefulness of combined treatment with both continuous administration of a hypoxic cytotoxin, tirapazamine (TPZ) and mild temperature hyperthermia (MTH) in boron neutron capture therapy (BNCT) in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells.Materials and methods: B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumors received reactor thermal neutron beam irradiation following the administration of a 10B-carrier (L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)) after single intraperitoneal injection of an acute hypoxia-releasing agent (nicotinamide), MTH (40 °C for 60 min), and 24-h continuous subcutaneous infusion of TPZ or combined treatment with both TPZ and MTH. Immediately after irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (=P + Q) tumor cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated.Results: BPA-BNCT increased the sensitivity of the total tumor cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B-carrier, combination with continuously administered TPZ with or without MTH enhanced the sensitivity of the both total and Q cells, especially Q cells. Even without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with combined treatment with both TPZ and MTH as well as nicotinamide treatment, showed the potential to reduce the number more than BSH-BNCT.Conclusion: BSH-BNCT combined with TPZ with or without MTH improved local tumor control, while BPA-BNCT in combination with both TPZ and MTH as well as nicotinamide is thought to reduce the number of lung metastases. It was elucidated that control of the chronic hypoxia-rich Q cell population in the primary solid tumor has the potential to impact the control of local tumors as a whole and that control of the acute hypoxia-rich total tumor cell population in the primary solid tumor has the potential to impact the control of lung metastases.


Assuntos
Terapia por Captura de Nêutron de Boro , Hipertermia Induzida , Neoplasias Pulmonares/secundário , Melanoma/patologia , Tirapazamina/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Camundongos , Tirapazamina/administração & dosagem , Tirapazamina/uso terapêutico , Resultado do Tratamento
2.
Int J Radiat Biol ; 92(4): 187-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26887694

RESUMO

Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells.


Assuntos
Boro/farmacocinética , Boro/uso terapêutico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Sobrevivência Celular/efeitos da radiação , Portadores de Fármacos/química , Humanos , Isótopos/farmacocinética , Isótopos/uso terapêutico , Mutação , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
Exp Ther Med ; 8(1): 291-301, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944637

RESUMO

The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA