Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Mol Cell ; 83(7): 1093-1108.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863348

RESUMO

The glucagon-PKA signal is generally believed to control hepatic gluconeogenesis via the CREB transcription factor. Here we uncovered a distinct function of this signal in directly stimulating histone phosphorylation for gluconeogenic gene regulation in mice. In the fasting state, CREB recruited activated PKA to regions near gluconeogenic genes, where PKA phosphorylated histone H3 serine 28 (H3S28ph). H3S28ph, recognized by 14-3-3ζ, promoted recruitment of RNA polymerase II and transcriptional stimulation of gluconeogenic genes. In contrast, in the fed state, more PP2A was found near gluconeogenic genes, which counteracted PKA by dephosphorylating H3S28ph and repressing transcription. Importantly, ectopic expression of phosphomimic H3S28 efficiently restored gluconeogenic gene expression when liver PKA or CREB was depleted. These results together highlight a different functional scheme in regulating gluconeogenesis by the glucagon-PKA-CREB-H3S28ph cascade, in which the hormone signal is transmitted to chromatin for rapid and efficient gluconeogenic gene activation.


Assuntos
Glucagon , Gluconeogênese , Animais , Camundongos , Gluconeogênese/genética , Glucagon/metabolismo , Histonas/metabolismo , Fosforilação , Proteínas 14-3-3/metabolismo , Fígado/metabolismo , Jejum/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
2.
J Biol Chem ; 300(7): 107487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908751

RESUMO

Macrophages are essential regulators of inflammation and bone loss. Receptor activator of nuclear factor-κß ligand (RANKL), a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages obtained from wildtype and YwhazKO animals and RAW264.7 cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger tartrate-resistant acid phosphatase-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.


Assuntos
Proteínas 14-3-3 , Osteoclastos , Ligante RANK , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Camundongos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Macrófagos/metabolismo , Camundongos Knockout , Osteoclastos/metabolismo , Osteoclastos/citologia , Estabilidade Proteica , Ligante RANK/metabolismo , Ligante RANK/genética , Células RAW 264.7 , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
3.
Cell Biol Int ; 48(3): 290-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100125

RESUMO

Oxidized low-density lipoprotein (ox-LDL) causes dysfunction of endothelial progenitor cells (EPCs), and we recently reported that 14-3-3-η can attenuate the damage triggered by ox-LDL in EPCs. However, the molecular mechanisms by which 14-3-3-η protects EPCs from the damage caused by ox-LDL are not fully understood. In this study, we observed that the expression of 14-3-3-η and BCL-2 were downregulated in ox-LDL-treated EPCs. Overexpression of 14-3-3-η in ox-LDL-treated EPC significantly increased BCL-2 level, while knockdown of BCL-2 reduced 14-3-3-η expression and mitigated the protective effect of 14-3-3-η on EPCs. In addition, we discovered that 14-3-3-η colocalizes and interacts with BCL-2 in EPCs. Taken together, these data suggest that 14-3-3-η protects EPCs from ox-LDL-induced damage by its interaction with BCL-2.


Assuntos
Células Progenitoras Endoteliais , Humanos , Apoptose , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Fish Shellfish Immunol ; 149: 109592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685443

RESUMO

Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.


Assuntos
Imunidade Inata , Filogenia , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Imunidade Inata/genética , Sequência de Aminoácidos , Proteínas 14-3-3/genética , Proteínas 14-3-3/imunologia , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
5.
J Biochem Mol Toxicol ; 38(4): e23675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488158

RESUMO

Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.


Assuntos
MicroRNAs , Músculo Liso Vascular , Becaplermina/farmacologia , Proliferação de Células , Miócitos de Músculo Liso , Fenótipo , MicroRNAs/genética , Movimento Celular , Células Cultivadas
6.
J Biol Chem ; 298(4): 101776, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227760

RESUMO

Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.


Assuntos
Morte Celular , Adesões Focais , N-Acetilglucosaminiltransferases/metabolismo , Transporte Proteico , Zixina , Morte Celular/genética , Morte Celular/efeitos da radiação , Adesões Focais/metabolismo , N-Acetilglucosaminiltransferases/genética , Serina , Zixina/genética , Zixina/metabolismo
7.
Cancer Cell Int ; 23(1): 244, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848941

RESUMO

BACKGROUND: Primary hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA-binding protein that is aberrantly expressed in multiple tumors; however, its expression and biological function in HCC have not been reported. METHODS: KHDRBS3 knockdown and overexpression were performed using the lentiviral vector system to investigate the effects of KHDRBS3 on cell proliferation, apoptosis, chemoresistance, and glycolysis. Murine xenograft tumor models were constructed to study the role of KHDRBS3 on tumor growth in vivo. Furthermore, RNA-Pull Down and RNA immunoprecipitation were utilized to explore the interaction between KHDRBS3 and 14-3-3ζ, a phosphopeptide-binding molecule encoded by YWHAZ. RESULTS: KHDRBS3 was highly expressed in human HCC tissues and predicted the poor prognosis of patients with HCC. Knockdown of KHDRBS3 exhibited a carcinostatic effect in HCC and impeded proliferation and tumor growth, reduced glycolysis, enhanced cell sensitivity to doxorubicin, and induced apoptosis. On the contrary, forced expression of KHDRBS3 expedited the malignant biological behaviors of HCC cells. The expression of KHDRBS3 was positively correlated with the expression of 14-3-3ζ. RNA immunoprecipitation and RNA pull-down assays demonstrated that KHDRBS3 bound to YWHAZ. We further confirmed that 14-3-3ζ silencing significantly reversed the promotion of proliferation and glycolysis and the inhibition of apoptosis caused by KHDRBS3 overexpression. CONCLUSIONS: Our findings suggest that KHDRBS3 promotes glycolysis and malignant progression of HCC through upregulating 14-3-3ζ expression, providing a possible target for HCC therapy.

8.
Mol Cell Biochem ; 478(7): 1475-1486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36385689

RESUMO

The relation between ischemia and heart failure is well demonstrated, and several studies suggested that realizing the physiological role of autophagy will be of great importance. Luteoloside (Lut) is one of the main components of Lonicera japonica flos and exhibits antioxidant, anti-inflammatory, and cardioprotective properties. To determine if Lut pretreatment enhanced autophagy by 14-3-3η expression and the AMPKα-mTOR/ULK1 pathway and protected the neonatal rat cardiomyocytes (NRCMs) against anoxia damage, NRCMs were treated using 20 µM Lut for 36 h, and the anoxia damage model was established using NRCMs. The indexes reflecting the condition of NRCMs, oxidative stress level, and mitochondrial function were evaluated. In addition, the expression and phosphorylation of 14-3-3η and AMPKα/mTOR/ULK1, and autophagy markers (LC3II, P62) and the abundance of autophagy lysosomes were detected. Results revealed that Lut pretreatment alleviated anoxia- induced damage in NRCMs, that is, Lut pretreatment could increase cell viability, decrease LDH activity and apoptosis, suppressed ROS generation and oxidative stress, restored intracellular ATP levels, stabilized MMP levels, and inhibited mPTP opening. Furthermore, Lut pretreatment could enhance autophagy via upregulating 14-3-3η, LC3II expression and increasing p-AMPKα/AMPKα and p-ULK1/ULK1 level, whereas P62 expression and p-mTOR/mTOR level decreased; the fluorescence intensity of autolysosomes also increased. However, in the NRCMs treated with pAD/14-3-3η RNAi or incubated with 3-MA (an autophagy inhibitor), the abovementioned effects of Lut pretreatment were reduced. Taken together, Lut pretreatment could enhance autophagy by upregulating 14-3-3η expression to influence the AMPKα-mTOR/ ULK1 pathway against anoxia-induced damage in NRCMs.


Assuntos
Miócitos Cardíacos , Serina-Treonina Quinases TOR , Ratos , Animais , Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Hipóxia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo
9.
J Pharmacol Sci ; 152(4): 210-219, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344056

RESUMO

Aberrant intestinal epithelial barrier function is the primary pathology of Ulcerative colitis (UC), making it a desirable drug target. In this study, our small-molecule compound AI-34 exerted a significant protective effect in an LPS-induced epithelial barrier injury model. In vitro, AI-34 treatment significantly decreased cell permeability, increased transmembrane resistance, and maintained the junctional protein (ZO-1 and E-cadherin) levels in monolayer cells. Using the LiP-small molecule mapping approach (LiP-SMap), we demonstrated that AI-34 binds to 14-3-3ζ. AI-34 promoted the interaction between 14-3-3ζ and ß-catenin, decreasing the ubiquitination of ß-catenin and thus maintaining intestinal epithelial barrier function. Finally, AI-34 triggered the stabilization of ß-catenin mediated by 14-3-3ζ, provoking a significant improvement in the DSS-induced colitis model. Our findings suggest that AI-34 may be a promising candidate for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Proteínas 14-3-3 , beta Catenina/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos Endogâmicos C57BL
10.
Acta Pharmacol Sin ; 44(2): 381-392, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35840657

RESUMO

Acute kidney injury (AKI) refers to a group of common clinical syndromes characterized by acute renal dysfunction, which may lead to chronic kidney disease (CKD), and this process is called the AKI-CKD transition. The transcriptional coactivator YAP can promote the AKI-CKD transition by regulating the expression of profibrotic factors, and 14-3-3 protein zeta (14-3-3ζ), an important regulatory protein of YAP, may prevent the AKI-CKD transition. We established an AKI-CKD model in mice by unilateral renal ischemia-reperfusion injury and overexpressed 14-3-3ζ in mice using a fluid dynamics-based gene transfection technique. We also overexpressed and knocked down 14-3-3ζ in vitro. In AKI-CKD model mice, 14-3-3ζ expression was significantly increased at the AKI stage. During the development of chronic disease, the expression of 14-3-3ζ tended to decrease, whereas active YAP was consistently overexpressed. In vitro, we found that 14-3-3ζ can combine with YAP, promote the phosphorylation of YAP, inhibit YAP nuclear translocation, and reduce the expression of fibrosis-related proteins. In an in vivo intervention experiment, we found that the overexpression of 14-3-3ζ slowed the process of renal fibrosis in a mouse model of AKI-CKD. These findings suggest that 14-3-3ζ can affect the expression of fibrosis-related proteins by regulating YAP, inhibit the maladaptive repair of renal tubular epithelial cells, and prevent the AKI-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibrose , Traumatismo por Reperfusão/patologia
11.
Cereb Cortex ; 32(9): 1894-1910, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34519346

RESUMO

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement. We further observed that RGS14414 treatment was able to prevent deficits in recognition, spatial, and temporal memory, which are types of memory that are particularly affected in patients with memory dysfunctions, in rodent models of aging and Alzheimer's disease. These results suggest that 14-3-3ζ-BDNF pathway might play an important role in the maintenance of the synaptic structures in PRh that support memory functions and that RGS14414-mediated activation of this pathway could serve as a remedy to treat memory deficits.


Assuntos
Córtex Perirrinal , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Plasticidade Neuronal/fisiologia , Ratos , Roedores/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(40): 25008-25017, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968020

RESUMO

IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively. Our limited understanding of the cross-talk between these two branches has generated a crucial gap of knowledge, leading to therapeutics indiscriminately blocking IL-17A and global inhibition of its target genes. In previous work, we discovered an elevated expression of 14-3-3 proteins in inflammatory aortic disease, a rare human autoimmune disorder with increased levels of IL-17A. Here we report that 14-3-3ζ is essential for IL-17 signaling by differentially regulating the signal-induced IL-6 and CXCL-1. Using genetically manipulated human and mouse cells, and ex vivo and in vivo rat models, we uncovered a function of 14-3-3ζ. As a part of the molecular mechanism, we show that 14-3-3ζ interacts with several TRAF proteins; in particular, its interaction with TRAF5 and TRAF6 is increased in the presence of IL-17A. In contrast to TRAF6, we found TRAF5 to be an endogenous suppressor of IL-17A-induced IL-6 production, an effect countered by 14-3-3ζ. Furthermore, we observed that 14-3-3ζ interaction with TRAF proteins is required for the IL-17A-induced IL-6 levels. Together, our results show that 14-3-3ζ is an essential component of IL-17A signaling and IL-6 production, an effect that is suppressed by TRAF5. To the best of our knowledge, this report of the 14-3-3ζ-TRAF5 axis, which differentially regulates IL-17A-induced IL-6 and CXCL-1 production, is unique.


Assuntos
Doenças Autoimunes/genética , Quimiocina CXCL1/genética , Interleucina-17/genética , Interleucina-6/genética , Proteínas 14-3-3/genética , Animais , Doenças Autoimunes/patologia , Quimiocinas/genética , Citocinas/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Ratos , Transdução de Sinais/genética , Fator 5 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/genética
13.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834640

RESUMO

Copper-zinc superoxide dismutase 1 (SOD1) has long been recognized as a major redox enzyme in scavenging superoxide radicals. However, there is little information on its non-canonical role and metabolic implications. Using a protein complementation assay (PCA) and pull-down assay, we revealed novel protein-protein interactions (PPIs) between SOD1 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) or epsilon (YWHAE) in this research. Through site-directed mutagenesis of SOD1, we studied the binding conditions of the two PPIs. Forming the SOD1 and YWHAE or YWHAZ protein complex enhanced enzyme activity of purified SOD1 in vitro by 40% (p < 0.05) and protein stability of over-expressed intracellular YWHAE (18%, p < 0.01) and YWHAZ (14%, p < 0.05). Functionally, these PPIs were associated with lipolysis, cell growth, and cell survival in HEK293T or HepG2 cells. In conclusion, our findings reveal two new PPIs between SOD1 and YWHAE or YWHAZ and their structural dependences, responses to redox status, mutual impacts on the enzyme function and protein degradation, and metabolic implications. Overall, our finding revealed a new unorthodox role of SOD1 and will provide novel perspectives and insights for diagnosing and treating diseases related to the protein.


Assuntos
Cobre , Superóxido Dismutase , Humanos , Cobre/química , Células HEK293 , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxidos
14.
J Neuroinflammation ; 19(1): 84, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413928

RESUMO

BACKGROUND: miR-203 was first indicated in maintaining skin homeostasis and innate immunity. Aberrant expression of miR-203 was found associated with pathological progressions of immune disorders, cancers, as well as neurodegenerations. Recently, increasing data on miR-203 in regulating neuroinflammation and neuronal apoptosis has raised extensive concern about the biological function of this microRNA. METHODS: Mouse model with ectopic miR-203 expression in the hippocampus was constructed by stereotactic injection of lentiviral expression vector of pre-miR-203. Association of miR-203 and mRNA of Akirin2, as well as the competition for miR-203 targeting between Akirin2 3'UTR and another recently characterized miR-203 target, 14-3-3θ, was verified using Dual-Luciferase Reporter Gene Assay and western blot. Microglia activation and pro-inflammatory cytokines expression in the hippocampus of mice overexpressing miR-203 was evaluated using immunohistochemistry analysis and western blot. Neuronal cell death was monitored using anti-caspase 8 in immunohistochemistry as well as TUNEL assay. Cognition of mice was assessed with a behavior test battery consisting of nesting behavior test, Barnes maze and fear conditioning test. RESULTS: Akirin2, an activator of NF-κB signaling, was identified as a direct target of miR-203. By also targeting 14-3-3θ, a negative regulator of NF-κB signaling, miR-203 displayed an overall pro-inflammatory role both in vitro and in vivo. Promoted nuclear translocation of NF-κB and increased expression of proinflammatory cytokines were observed in cultured BV2 cells transfected with miR-203 mimics. Microglia activation and upregulation of NF-κB, IL-1ß and IL-6 were observed in mouse hippocampus with overexpression of miR-203. In addition, promoted neuronal cell death in the hippocampus and impaired neuronal activities resulted in cognitive dysfunction of mice with ectopic miR-203 expression in the hippocampus. CONCLUSION: A pro-inflammatory and neurodisruptive role of miR-203 was addressed based on our data in this study. Given the identification of Akirin2 as a direct target of miR-203 and the competition with 14-3-3θ for miR-203 targeting, together with the findings of other signaling molecules in NF-κB pathway as targets of miR-203, we proposed that miR-203 was a master modulator, fine-tunning neuroinflammation by juggling different components of NF-κB signaling.


Assuntos
MicroRNAs , NF-kappa B , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Proteínas Repressoras/metabolismo
15.
Immunol Invest ; 51(1): 182-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32967487

RESUMO

OBJECTIVE: To systematically evaluate the diagnostic value of 14-3-3η protein for rheumatoid arthritis (RA). METHOD: Searched PubMed, Web of Science, Embase and China Biology Medicine (CBM) databases comprehensively from inception to May 2020. The evaluation index were the pooled sensitivity, specificity, diagnosis odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR), as well as the area under the summary receiver operating characteristic (SROC) curves. Meta-Disc 1.4 and RevMan 5.3 were used to analyze all statistics. QUADAS-2 tool was applied to evaluate the quality of eligible studies. Subgroup analysis and meta-regression were used to explore the sources of heterogeneity. RESULTS: Nine articles containing eleven records were eligible for this meta-analysis. The pooled sensitivity of 14-3-3η was 0.63 (95% CI: 0.60 to 0.66), the pooled specificity was 0.90 (95% CI: 0.88 to 0.91). The pooled PLR and NLR was 6.10 (95% CI: 4.67 to 7.96) and 0.40 (95% CI: 0.33 to 0.48), respectively. The pooled DOR was 15.90 (95% CI: 11.15 to 22.68), and the area under the curve (AUC) was 0.8696. Compared with a single indicator (rheumatoid factor or anti-citrullinated protein antibodies), adding 14-3-3η can bring incremental benefits to the diagnosis of RA. The results of subgroup analysis and meta-regression suggested that the two factors (ethnicity, early vs established RA) we analyzed might not be the source of heterogeneity (P value were 0.0979 and 0.4298, respectively) and there was no publication bias among these articles (P = .42). CONCLUSION: Serum 14-3-3η protein is a supplementary biomarker in the diagnosis of RA.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Artrite Reumatoide/diagnóstico , Biomarcadores , Humanos , Curva ROC , Fator Reumatoide , Sensibilidade e Especificidade
16.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981137

RESUMO

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Ativação Linfocitária , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
17.
Biochem Genet ; 60(6): 1986-1999, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35190930

RESUMO

The 14-3-3 Eta (14-3-3 η) biomarker platform is a relatively recent discovery with the potential to significantly address the diagnosis and prognosis of rheumatoid arthritis (RA) disease. Hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) have been implicated in inflammatory mechanisms in RA. We hypothesized a molecular association of the coding YWHAH gene and its expressed protein 14-3-3 η with hypoxia and angiogenesis in RA. One hundred healthy subjects and 100 RA patients were enrolled in the study. YWHAH gene expression was determined using quantitative PCR, and its gene polymorphism rs2858750 was assessed by Taqman genotyping assay. Serum levels of 14-3-3 η, HIF-1α, and VEGF were measured using the ELISA technique, and clinical parameters were routinely examined. In RA patients, significant positive correlations were found between 14-3-3 η, HIF-1α (r = 0.84), and VEGF (r = 0.85). YWHAH gene expression was upregulated 10.8 fold (CI 95% 10.1-11.5) in RA patients and significantly correlated with all disease activity parameters, ACPA, and levels of 14-3-3 η, HIF-1α, and VEGF. RA patients showed a higher frequency of YWHAH rs2858750 A allele than healthy subjects (p = 0.02). The risk A allele carriers showed higher disease activity parameters, ACPA, YWHAH gene expression, and increased serum levels of 14-3-3 η (p < 0.001), HIF-1α (p = 0.002), and VEGF (p = 0.001) than the G allele. Serum 14-3-3 η and its rs2858750 genetic variant are associated with increased hypoxia and angiogenesis in RA and activity, and severity of the disease.


Assuntos
Proteínas 14-3-3 , Artrite Reumatoide , Fator A de Crescimento do Endotélio Vascular , Humanos , Proteínas 14-3-3/genética , Artrite Reumatoide/genética , Egito , Hipóxia , Fator A de Crescimento do Endotélio Vascular/genética
18.
J Infect Dis ; 224(5): 870-880, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373444

RESUMO

BACKGROUND: We identified host single-nucleotide variants (SNVs) associated with neurocognitive impairment (NCI) in perinatally HIV-infected (PHIV) children. METHODS: Whole-exome sequencing (WES) was performed on 217 PHIV with cognitive score for age (CSA) < 70 and 247 CSA ≥ 70 (discovery cohort [DC]). SNVs identified in DC were evaluated in 2 validation cohorts (VC). Logistic regression was used to estimate adjusted odds ratios (ORs) for NCI. A human microglia NLRP3 inflammasome assay characterized the role of identified genes. RESULTS: Twenty-nine SNVs in 24 genes reaching P ≤ .002 and OR ≥ 1.5 comparing CSA < 70 to CSA ≥ 70 were identified in the DC, of which 3 SNVs were identified in VCs for further study. Combining the 3 cohorts, SNV in CCRL2 (rs3204849) was associated with decreased odds of NCI (P < .0001); RETREG1/FAM134B (rs61733811) and YWHAH (rs73884247) were associated with increased risk of NCI (P < .0001 and P < .001, respectively). Knockdown of CCRL2 led to decreased microglial release of IL-1ß following exposure to ssRNA40 while knockdown of RETREG1 and YWHAH resulted in increased IL-1ß release. CONCLUSIONS: Using WES and 2 VCs, and gene silencing of microglia we identified 3 genetic variants associated with NCI and inflammation in HIV-infected children.


Assuntos
Infecções por HIV/complicações , HIV-1 , Transmissão Vertical de Doenças Infecciosas , Inflamação/genética , Transtornos Neurocognitivos/genética , Proteínas 14-3-3 , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Genômica , Infecções por HIV/psicologia , Infecções por HIV/transmissão , Humanos , Lactente , Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Microglia , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/virologia , Receptores CCR
19.
Reumatologia ; 60(6): 384-391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683839

RESUMO

Introduction: This study was designed to explore the potential association of serum 14-3-3η protein level with disease activity and bone mineral density (BMD) in Egyptian patients with rheumatoid arthritis (RA). Patients were recruited from the outpatient clinic at Mansoura University Hospital. Material and methods: One hundred eighty-eight patients with RA and 192 matched controls were enrolled. The rheumatoid arthritis activity parameters were evaluated in RA patients. Bone mineral density was measured. Serum levels of 14-3-3η protein and IL-6 were estimated for all participants by enzyme-linked immunosorbent assays (ELISA). Results: Rheumatoid arthritis patients had a significantly higher median serum 14-3-3η protein level compared to matched controls (p ≤ 0.05). Serum level of 14-3-3η protein was significantly correlated with DAS28-ESR (p ≤ 0.05) and serum IL-6 level (p ≤ 0.05). The rheumatoid arthritis-osteoporosis group had significantly higher serum 14-3-3η protein than the RA-osteopenia group and RA-control group. Similarly, the difference of the serum 14-3-3η protein between the RA-osteopenia group and the RA-control group was significant. In the linear regression analysis, the strongest factors that were associated with BMD in RA patients were the serum level of 14-3-3η protein (p ≤ 0.05), IL-6 (p ≤ 0.05) and DAS28-ESR (p ≤ 0.05). Conclusions: Serum level of 14-3-3η protein was significantly elevated in RA patients compared to controls and is significantly correlated with parameters of activity disease. The RA-osteoporosis group had significantly higher serum 14-3-3η protein than the RA-osteopenia group and RA-control group. Serum 14-3-3η protein can be a promising biomarker to reflect RA activity and predict presence of osteoporosis in RA patients.

20.
Cell Biol Int ; 45(4): 839-848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325040

RESUMO

Endothelial progenitor cells (EPCs) are precursor cells of vascular endothelial cells, which are widely involved in the pathological process of cardiovascular diseases. EPCs apoptosis could accelerate the process of cardiovascular diseases. 14-3-3-η protein has been proved to be a potent antiapoptosis molecule. However, inhibition of EPCs apoptosis by 14-3-3-η and further specific mechanism have not been investigated. EPCs were isolated from human cord blood, and identified using VEGFR2 and CD34. 14-3-3-η overexpression model in vitro was established. Cell invasion, apoptosis, and proliferation were measured by transwell, flow cytometry, and Cell Counting Kit-8, respectively. Expression of 14-3-3-η, Bcl-2, and voltage-dependent anion channel 1 (VDAC1) were measured using quantitative real-time polymerase chain reaction and western blot analysis. Reactive oxygen species (ROS) intensity was measured using 2'-7' dichlorofluorescin diacetate probe. Mitochondrial membrane potential was detected using JC-1 dye. Overexpression of 14-3-3-η significantly promoted invasion and proliferation, but suppressed apoptosis of EPCs. Overexpression of 14-3-3-η remarkably inhibited ROS and promoted antioxidant enzyme levels in EPCs. 14-3-3-η might inhibit apoptosis of EPCs through attenuating mitochondrial injury. This study might provide a new target, 14-3-3-η, for the prevention and treatment of cardiovascular diseases through targeting EPCs.


Assuntos
Proteínas 14-3-3/metabolismo , Doenças Cardiovasculares , Células Progenitoras Endoteliais , Apoptose , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA