Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Resour Res ; 54(7): 4228-4244, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30319160

RESUMO

Soil Moisture Active Passive (SMAP) Level-2 soil moisture retrievals collected during 2015-2017 are used in isolation to estimate 10-day warm-season precipitation and streamflow totals within 145 medium-sized (2,000-10,000 km2) unregulated watersheds in the conterminous United States. The precipitation estimation algorithm, derived from a well documented approach, includes a locally-calibrated loss function component that significantly improves its performance. For the basin-scale water budget analysis, the precipitation and streamflow algorithms are calibrated with two years of SMAP retrievals in conjunction with observed precipitation and streamflow data and are then applied to SMAP retrievals alone during a third year. While estimation accuracy (as measured by the square of the correlation coefficient, r2, between estimates and observations) varies by basin, the average r2 for the basins is 0.53 for precipitation and 0.22 for streamflow. For the subset of 22 basins that calibrate particularly well, the r2 increases to 0.63 for precipitation and to 0.51 for streamflow. The magnitudes of the estimated variables are also accurate, with sample pairs generally clustered about the 1:1 line. The chief limitation to the estimation involves large biases induced during periods of high rainfall; the accuracy of the estimates (in terms of r2 and RMSE) increases significantly when periods of higher rainfall are not considered. The potential for transferability is also demonstrated by calibrating the streamflow estimation equation in one basin and then applying the equation in another. Overall, the study demonstrates that SMAP retrievals contain, all by themselves, information that can be used to estimate large-scale water budgets.

2.
Water Resour Res ; 52(9): 7213-7225, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29983456

RESUMO

An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS datasets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ~100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA