Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 110: 173-180, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117667

RESUMO

2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid in the brain and an agonist at two cannabinoid receptors (CB1 and CB2). The synthesis, degradation and signaling of 2-AG have been investigated in detail but its relationship to other endogenous monoacylglycerols has not been fully explored. Three congeners that have been isolated from the CNS are 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG), and 2-palmitoylglycerol (2-PG). These lipids do not orthosterically bind to cannabinoid receptors but are reported to potentiate the activity of 2-AG, possibly through inhibition of 2-AG degradation. This phenomenon has been dubbed the 'entourage effect' and has been proposed to regulate synaptic activity of 2-AG. To clarify the activity of these congeners of 2-AG we tested them in neuronal and cell-based signaling assays. The signaling profile for these compounds is inconsistent with an entourage effect. None of the compounds inhibited neurotransmission via CB1 in autaptic neurons. Interestingly, each failed to potentiate 2-AG-mediated depolarization-induced suppression of excitation (DSE), behaving instead as antagonists. Examining other signaling pathways we found that 2-OG interferes with agonist-induced CB1 internalization while 2-PG modestly internalizes CB1 receptors. However in tests of pERK, cAMP and arrestin recruitment, none of the acylglycerols altered CB1 signaling. Our results suggest 1) that these compounds do not serve as entourage compounds under the conditions examined, and 2) that they may instead serve as functional antagonists. Our results suggest that the relationship between 2-AG and its congeners is more nuanced than previously appreciated.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Arrestina/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerídeos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Fatores de Tempo , Transfecção
2.
J Mass Spectrom Adv Clin Lab ; 28: 35-46, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36872954

RESUMO

The emerging disciplines of lipidomics and metabolomics show great potential for the discovery of diagnostic biomarkers, but appropriate pre-analytical sample-handling procedures are critical because several analytes are prone to ex vivo distortions during sample collection. To test how the intermediate storage temperature and storage period of plasma samples from K3EDTA whole-blood collection tubes affect analyte concentrations, we assessed samples from non-fasting healthy volunteers (n = 9) for a broad spectrum of metabolites, including lipids and lipid mediators, using a well-established LC-MS-based platform. We used a fold change-based approach as a relative measure of analyte stability to evaluate 489 analytes, employing a combination of targeted LC-MS/MS and LC-HRMS screening. The concentrations of many analytes were found to be reliable, often justifying less strict sample handling; however, certain analytes were unstable, supporting the need for meticulous processing. We make four data-driven recommendations for sample-handling protocols with varying degrees of stringency, based on the maximum number of analytes and the feasibility of routine clinical implementation. These protocols also enable the simple evaluation of biomarker candidates based on their analyte-specific vulnerability to ex vivo distortions. In summary, pre-analytical sample handling has a major effect on the suitability of certain metabolites as biomarkers, including several lipids and lipid mediators. Our sample-handling recommendations will increase the reliability and quality of samples when such metabolites are necessary for routine clinical diagnosis.

3.
Cannabis Cannabinoid Res ; 4(4): 231-239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31872059

RESUMO

Introduction: The cannabinoid type 1 (CB1) receptor and cannabinoid type 2 (CB2) receptor are widely expressed in the body and anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are their best characterized endogenous ligands. The diacylglycerol lipases (diacylglycerol lipase alpha and diacylglycerol lipase beta) not only synthesize essentially all the 2-AG in the body but also generate other monoacylglycerols, including 2-linoleoylglycerol (2-LG). This lipid has been proposed to modulate endocannabinoid (eCB) signaling by protecting 2-AG from hydrolysis. However, more recently, 2-LG has been reported to be a CB1 antagonist. Methods: The effect of 2-LG on the human CB1 receptor activity was evaluated in vitro using a cell-based reporter assay that couples CB1 receptor activation to the expression of the ß-lactamase enzyme. Receptor activity can then be measured by a ß-lactamase enzymatic assay. Results: When benchmarked against 2-AG, AEA, and arachidonoyl-2'-chloroethylamide (a synthetic CB1 agonist), 2-LG functions as a partial agonist at the CB1 receptor. The 2-LG response was potentiated by JZL195, a drug that inhibits the hydrolysis of monoacylglycerols. The 2-LG response was also fully inhibited by the synthetic CB1 antagonist AM251 and by the natural plant derived antagonist cannabidiol. 2-LG did not potentiate, and only blunted, the activity of 2-AG and AEA. Conclusions: These results support the hypothesis that 2-LG is a partial agonist at the human CB1 receptor and capable of modulating the activity of the established eCBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA