Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 211: 113116, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33360803

RESUMO

We previously reported the 2-oxopyridine-3-carboxamide derivative EC21a as the first small synthetic CB2R positive allosteric modulator which displayed antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Herein, we extended the structure-activity relationships of EC21a through structural modifications regarding the p-fluoro benzyl moiety at position 1 and the amide group in position 3 of the central core. The characterization in vitro was assessed through radioligand binding experiments and functional assays (GTPγS, cAMP, ßarrestin2). Among the new compounds, the derivatives A1 (SV-10a) and A5 (SB-13a) characterized respectively by fluorine atom or by chlorine atom in ortho position of the benzylic group at position 1 and by a cycloheptane-carboxamide at position 3 of the central core, showed positive allosteric behavior on CB2R. They enhanced the efficacy of CP55,940 in [35S]GTPγS assay, and modulated CP55,940-dependent ßarrestin2 recruitment and cAMP inhibition. The obtained results extend our knowledge of the structural requirements for interaction with the allosteric site of CB2R.


Assuntos
Regulação Alostérica/genética , Receptor CB2 de Canabinoide/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA