RESUMO
INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.
Assuntos
Aminopiridinas , Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Indazóis , Lactamas , Neoplasias Pulmonares , Pirazóis , Pirimidinas , Sulfonas , Humanos , Proteínas Tirosina Quinases/genética , Crizotinibe , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas , Resistência a MedicamentosRESUMO
BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.
Assuntos
Antineoplásicos , Técnicas de Cultura de Células , Esferoides Celulares , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Doxorrubicina/farmacologia , Paclitaxel/farmacologia , Cisplatino/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células MCF-7 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacosRESUMO
Traditional two-dimensional (2D) cell culture employed for centuries is extensively used in toxicological studies. There is no doubt that 2D cell culture has made significant contributions to toxicology. However, in today's world, it is necessary to develop more physiologically relevant models. Three-dimensional (3D) cell culture, which can recapitulate the cell's microenvironment, is, therefore, a more realistic model compared to traditional cell culture. In toxicology, 3D cell culture models are a powerful tool for studying different tissues and organs in similar environments and behave as if they are in in vivo conditions. In this review, we aimed to present 3D cell culture models that have been used in different organ toxicity studies. We reported the results and interpretations obtained from these studies. We aimed to highlight 3D models as the future of cell culture by reviewing 3D models used in different organ toxicity studies.
Assuntos
Técnicas de Cultura de Células , Toxicologia , Técnicas de Cultura de Células/métodosRESUMO
Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third most frequent cause of tumour-related mortality worldwide. Currently, several surgical and medical therapeutic strategies are available for HCCs; however, the interaction between neoplastic cells and non-neoplastic stromal cells within the tumour microenvironment (TME) results in strong therapeutic resistance of HCCs to conventional treatment. Therefore, the development of novel treatments is urgently needed to improve the survival of patients with HCC. The first step in developing efficient chemotherapeutic drugs is the establishment of an appropriate system for studying complex tumour culture and microenvironment interactions. Three-dimensional (3D) culture model might be a crucial bridge between in vivo and in vitro due to its ability to mimic the naturally complicated in vivo TME compared to conventional two-dimensional (2D) cultures. In this review, we shed light on various established 3D culture models of HCC and their role in the investigation of tumour-TME interactions and HCC-related therapeutic resistance.
RESUMO
The liver is one of the most studied organs of the human body owing to its central role in xenobiotic and drug metabolism. In recent decades, extensive research has aimed at developing in vitro liver models able to mimic liver functions to study pathophysiological clues in high-throughput and reproducible environments. Two-dimensional (2D) models have been widely used in screening potential toxic compounds but have failed to accurately reproduce the three-dimensionality (3D) of the liver milieu. To overcome these limitations, improved 3D culture techniques have been developed to recapitulate the hepatic native microenvironment. These models focus on reproducing the liver architecture, representing both parenchymal and nonparenchymal cells, as well as cell interactions. More recently, Liver-on-Chip (LoC) models have been developed with the aim of providing physiological fluid flow and thus achieving essential hepatic functions. Given their unprecedented ability to recapitulate critical features of the liver cellular environments, LoC have been extensively adopted in pathophysiological modelling and currently represent a promising tool for tissue engineering and drug screening applications. In this review, we discuss the evolution of experimental liver models, from the ancient 2D hepatocyte models, widely used for liver toxicity screening, to 3D and LoC culture strategies adopted for mirroring a more physiological microenvironment for the study of liver diseases.
Assuntos
Técnicas de Cultura de Células , Microfluídica , Hepatócitos , Humanos , Fígado , Engenharia TecidualRESUMO
Two-dimensional (2D) cell cultures have been the standard for many different applications, ranging from basic research to stem cell and cancer research to regenerative medicine, for most of the past century. Hence, almost all of our knowledge about fundamental biological processes has been provided by primary and established cell lines cultured in 2D monolayer. However, cells in tissues and organs do not exist as single entities, and life in multicellular organisms relies on the coordination of several cellular activities, which depend on cell-cell communication across different cell types and tissues. In addition, cells are embedded within a complex non-cellular structure known as the extracellular matrix (ECM), which anchors them in a three-dimensional (3D) formation. Likewise, tumour cells interact with their surrounding matrix and tissue, and the physical and biochemical properties of this microenvironment regulate cancer differentiation, proliferation, invasion, and metastasis. 2D models are unable to mimic the complex and dynamic interactions of the tumour microenvironment (TME) and ignore spatial cell-ECM and cell-cell interactions. Thus, multicellular 3D models are excellent tools to recapitulate in vitro the spatial dimension, cellular heterogeneity, and molecular networks of the TME. This review summarizes the biological significance of the cell-ECM and cell-cell interactions in the onset and progression of tumours and focuses on the requirement for these interactions to build up representative in vitro models for the study of the pathophysiology of cancer and for the design of more clinically relevant treatments.
Assuntos
Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Esferoides Celulares/citologia , Comunicação Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Esferoides Celulares/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: Small extracellular vesicles (SEVs) have a diameter between 30 and 150 nm and play a key role in cell-cell communication. As cells cultured in 3D vs 2D behave differently, this project aimed to assess whether there were differences in SEVs derived from human oral mucosa lamina propria-progenitor cells (OMLP-PCs) cultured in a 3D matrix compared with traditional 2D monolayer cultures. METHODS: OMLP-PCs were cultured in 3D type I collagen matrices or on traditional 2D tissue culture plastic. Cell morphology and viability were assessed by light microscopy, actin staining, and trypan blue staining. SEVs secreted by OMLP-PCs were purified and quantitatively analyzed by a BCA assay and nanoparticle tracking analysis (NTA; nanosight™). SEVs were further characterized by flow cytometry. SEV proliferative function was assessed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: Cells cultured in 3D grew well as observed by light microscopy and phalloidin staining with cells branching in three dimensions (as opposed to the cells grown as monolayers on tissue culture plastic). NTA demonstrated a significantly higher number of SEV-sized particles in the conditioned medium of cells grown in 3D type I collagen matrices vs a 2D monolayer (P < .01). Like SEVs from 2D culture, SEVs from 3D culture demonstrated a particle size within the expected SEV range. Tetraspanin analysis confirmed that 3D-derived SEVs were positive for typical, expected tetraspanins. Cell proliferation analysis demonstrated that SEVs produced through 3D cell culture conditions significantly reduced the proliferation of skin fibroblasts when compared with SEVs from 2D monolayers (P < .05). CONCLUSION: 3D culture of OMLP-PCs produced typical SEVs but in a greater amount than when the same cells were cultured in 2D. The downstream proliferative potential of the SEVs was influenced by the initial culture methodology. Future work should now assess the potential effects of 3D SEVs on key wound healing activities.
Assuntos
Técnicas de Cultura de Células , Vesículas Extracelulares , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados , Humanos , Mucosa Bucal/citologiaRESUMO
Exposure to atmospheric particulate matter (PM) can affect human health, causing asthma, atherosclerosis, renal disease and cancer. In the last few years, outdoor air pollution has increased globally, leading to a public health emergency. Epidemiological studies have reported a correlation between the development of severe respiratory and systemic diseases and exposure to PM. To evaluate the toxic effect of PM of different origins, conventional experimental toxicological investigations have been conducted in animals; however, animal experimentation poses major ethical issues and usually differs from human conditions. As an alternative, human cell cultures are increasingly being used to investigate cellular and molecular mechanisms of PM toxicity. Although 2D cell cultures have been proven helpful, they are far from being a valid alternative to animal tests. Recently, 3D cell culture and organ-on-chip technology have provided systems that are more complex and that can be more informative for toxicity studies. In this review, the results of the 2D systems that are most frequently used for PM toxicity evaluations are summarized with a special focus on their limitations. We also examined to which extent 3D cell culture and particularly the organ-on-chip technology may overcome these limitations and represent effective tools to improve airborne PM toxicity evaluations.
Assuntos
Poluentes Atmosféricos/toxicidade , Alternativas aos Testes com Animais/métodos , Material Particulado/toxicidade , Testes de Toxicidade/métodos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Humanos , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacosRESUMO
The in vitro cell culture environment can impact on cell biochemistry and cell cycle. The manifestation of such substrate-induced changes in cell cycle in the Raman microspectroscopic profiles of cell cultures is investigated at the level of nucleolus, nucleus and cytoplasm. HeLa immortalised human cervical cells and HaCaT dermal cells were cultured on three different substrates, conventional polystyrene cell culture dishes, CaF2 slides as a commonly used Raman substrate, and glass slides coated with collagen rat tail, as a mimic of the extra-cellular matrix (ECM) environment. A cell cycle study, based on percentage DNA content, as determined using propidium iodide staining and monitored by flow cytometry, was performed on cells of both types, grown on the different substrates, confirming that the in vitro cell culture environment impacts significantly on the cell cycle. Live cell in vitro Raman spectroscopic analysis of cells on the 2D CaF2 and 3D collagen substrates was performed and data was analysed using principal component analysis (PCA). The spectroscopic analysis revealed differences in profiles which reflect the differences in cell cycle for both in vitro culture environments. In particular, the Raman spectra of cells grown on CaF2 show indicators of cell stress, which are also associated with cell cycle arrest at the G0/G1 phase. This work contributes to the field of Raman spectroscopic analysis by providing a fresh look at the significance of the effect of in vitro culture environment to cell cycle and the sensitivity of Raman spectroscopy to such differences in cell metabolism.
Assuntos
Meios de Cultura/farmacologia , Análise Espectral Raman/métodos , Técnicas de Cultura de Células , Ciclo Celular , Linhagem Celular , Colágeno/química , Colágeno/farmacologia , Humanos , Análise de Componente PrincipalRESUMO
A generic research platform with 2-dimensional (2D) cell culture technology, a 3-dimensional (3D) in vitro tissue model, and a scaled-down cell culture and imaging system in between, was utilized to address the problematic issues associated with the use of serum in skin tissue engineering. Human dermal fibroblasts (HDFs) and immortalized keratinocytes (HaCat cells) mono- or co-cultured in serum or serum-free medium were compared and analyzed via the platform. It was demonstrated that serum depletion had significant influence on the attachment of HaCat cells onto tissue culture plastic (TCP), porous substrates and cellulosic scaffolds, which was further enhanced by the pre-seeded HDFs. The complex structures formed by the HDFs colonized within the porous substrates and scaffolds not only prevented the seeded HaCat cells from filtering through the open pores, but also acted as cellular substrates for HaCat cells to attach onto. When mono-cultured on TCP, both HDFs and HaCat cells were less proliferative in medium without serum than with serum. However, both cell types were successfully co-cultured in 2D using serum-free medium if the initial cell seeding density was higher than 80,000 cells/cm² (with 1:1 ratio). Based on the results from 2D cultures, co-culture of both cell types on modular substrates with small open pores (125 µm) and cellulosic scaffolds with open pores of varying sizes (50-300 µm) were then conducted successfully in serum-free medium. This study demonstrated that the generic research platform had great potential for in-depth understanding of HDFs and HaCat cells cultivated in serum-free medium, which could inform the processes for manufacturing skin cells or tissues for clinical applications.
Assuntos
Fibroblastos/citologia , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular , Células Cultivadas , Celulose/química , Técnicas de Cocultura/métodos , Meios de Cultura Livres de Soro/química , Humanos , Queratinócitos/citologia , PorosidadeRESUMO
INTRODUCTION: In native heart tissue, functions of cardiac fibroblasts (CFs) include synthesis, remodeling, and degradation of the extracellular matrix (ECM) as well as secreting factors that regulate cardiomyocyte (CM) function. The influence of direct co-culture and CF-derived ECM on CM mechanical function are not fully understood. METHODS: Here we use an engineered culture platform that provides control over ECM geometry and substrate stiffness to evaluate the influence of iPSC-CFs, and the ECM they produce, on the mechanical function of iPSC-CMs. Mechanical analysis was performed using digital image correlation to quantify maximum contractile strain, spontaneous contraction rate, and full-field organization of the contractions. RESULTS: When cultured alone, iPSC-CFs produce and remodel the ECM into fibers following the underlying 15° chevron patterned ECM. The substrates were decellularized and confirmed to have highly aligned fibers that covered a large fraction of the pattern area before reseeding with iPSC-CMs, alone or in co-culture with iPSC-CFs. When seeded on decellularized ECM, larger maximum contractile strains were observed in the co-culture condition compared to the CM Only condition. No significant difference was found in contractile strain between the Matrigel and decellularized ECM conditions; however, the spontaneous contraction rate was lower in the decellularized ECM condition. A methodology for quantifying alignment of cell contraction across the entire field of view was developed based on trajectories approximating the cell displacements during contraction. Trajectory alignment was unaltered by changes in culture or ECM conditions. CONCLUSIONS: These combined observations highlight the important role CFs play in vivo and the need for models that enable a quantitative approach to examine interactions between the CFs and CMs, as well as the interactions of these cells with the ECM.
Assuntos
Técnicas de Cocultura , Matriz Extracelular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Contração Miocárdica , Células Cultivadas , Mecanotransdução Celular , Matriz Extracelular Descelularizada , Diferenciação Celular , Engenharia Tecidual/métodosRESUMO
Poly(ethylene glycol)-based (PEG) hydrogels provide an ideal platform to obtain well-defined and tailor-made cell culture matrices to enhance in vitro cell culture conditions, although cell adhesion is often challenging when the cells are cultivated on the substrate surface. We herein demonstrate two approaches for the synthesis of polycationic PEG-based hydrogels which were modified to enhance cell-matrix interactions, to improve two-dimensional (2D) cell culture, and catalyze hydrolytic degradation. While the utilization of N,N-(bisacryloxyethyl) amine (BAA) as cross-linker for in situ gelation provides degradable scaffolds for dynamic cell culture, the incorporation of short segments of poly(N-(3-(dimethylamino)propyl)acrylamide) (PDMAPAam) provides high local cationic charge density leading to PEG-based hydrogels with high selectivity for fibroblastic cell lines. The adsorption of transforming growth factor (TGF-ß) into the hydrogels induced stimulation of fibrosis and thus the formation of collagen as a natural ECM compound. With this, these dynamic hydrogels enhance in vitro cell culture by providing a well-defined, artificial, and degradable matrix that stimulates cells to produce their own natural scaffold within a defined time frame.
Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Técnicas de Cultura de Células , Colágeno , Hidrogéis/farmacologia , Hidrogéis/químicaRESUMO
BACKGROUND: Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS: In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS: We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 µm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION: The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
RESUMO
Drug development and testing are a tedious and expensive process with a high degree of uncertainty in the clinical success and preclinical validation of manufactured therapeutic agents. Currently, to understand the drug action, disease mechanism, and drug testing, most therapeutic drug manufacturers use 2D cell culture models to validate the drug action. However, there are many uncertainties and limitations with the conventional use of 2D (monolayer) cell culture models for drug testing that are primarily attributed due to poor mimicking of cellular mechanisms, disturbance in environmental interaction, and changes in structural morphology. To overcome such odds and difficulties in the preclinical validation of therapeutic medications, newer in vivo drug testing cell culture models with higher screening efficiencies are required. One such promising and advanced cell culture model reported recently is the "three-dimensional cell culture model." The 3D cell culture models are reported to show evident benefits over conventional 2D cell models. This review article outlines and describes the current advancement in cell culture models, their types, significance in high-throughput screening, limitations, applications in drug toxicity screening, and preclinical testing methodologies to predict in vivo efficacy.
Assuntos
Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Técnicas de Cultura de Células em Três Dimensões , Desenvolvimento de MedicamentosRESUMO
BACKGROUND: Ruthenium complexes have shown promise in treating many cancers, including breast cancer. Previous studies of our group have demonstrated the potential of the trans-[Ru(PPh3)2(N,N-dimethylN'-thiophenylthioureato-k2O,S)(bipy)]PF6 complex, the Ru(ThySMet), in the treatment of breast tumor cancers, both in 2D and 3D culture systems. Additionally, this complex presented low toxicity when tested in vivo. AIMS: Improve the Ru(ThySMet) activity by incorporating the complex into a microemulsion (ME) and testing its in vitro effects. METHODS: The ME-incorporated Ru(ThySMet) complex, Ru(ThySMet)ME, was tested for its biological effects in two- (2D) and three-dimensional (3D) cultures using different types of breast cells, MDA-MB-231, MCF-10A, 4T1.13ch5T1 and Balb/C 3T3 fibroblasts. RESULTS: An increased selective cytotoxicity of the Ru(ThySMet)ME for tumor cells was found in 2D cell culture, compared with the original complex. This novel compound also changed the shape of tumor cells and inhibited cell migration with more specificity. Additional 3D cell culture tests using the non-neoplastic S1 and the triple-negative invasive T4-2 breast cells have shown that Ru(ThySMet)ME presented increased selective cytotoxicity for tumor cells compared with the 2D results. The morphology assay performed in 3D also revealed its ability to reduce the size of the 3D structures and increase the circularity in T4-2 cells. CONCLUSION: These results demonstrate that the Ru(ThySMet)ME is a promising strategy to increase its solubility, delivery, and bioaccumulation in target breast tumors.
RESUMO
Pulmonary infections have been a leading etiology of morbidity and mortality worldwide. Upper and lower respiratory tract infections have multifactorial causes, which include bacterial, viral, and rarely, fungal infections. Moreover, the recent emergence of SARS-CoV-2 has created havoc and imposes a huge healthcare burden. Drug and vaccine development against these pulmonary pathogens like respiratory syncytial virus, SARS-CoV-2, Mycobacteria, etc., requires a systematic set of tools for research and investigation. Currently, in vitro 2D cell culture models are widely used to emulate the in vivo physiologic environment. Although this approach holds a reasonable promise over pre-clinical animal models, it lacks the much-needed correlation to the in vivo tissue architecture, cellular organization, cell-to-cell interactions, downstream processes, and the biomechanical milieu. In view of these inadequacies, 3D cell culture models have recently acquired interest. Mammalian embryonic and induced pluripotent stem cells may display their remarkable self-organizing abilities in 3D culture, and the resulting organoids replicate important structural and functional characteristics of organs such the kidney, lung, gut, brain, and retina. 3D models range from scaffold-free systems to scaffold-based and hybrid models as well. Upsurge in organs-on-chip models for pulmonary conditions has anticipated encouraging results. Complexity and dexterity of developing 3D culture models and the lack of standardized working procedures are a few of the setbacks, which are expected to be overcome in the coming times. Herein, we have elaborated the significance and types of 3D cell culture models for scrutinizing pulmonary infections, along with the in vitro techniques, their applications, and additional systems under investigation.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Técnicas de Cultura de Células/métodos , Pulmão , Organoides , MamíferosRESUMO
BACKGROUND: Most in vitro cancer cell experiments have been performed using 2D models. However, 3D spheroid cultures are increasingly favored for being more representative of in vivo tumor conditions. To overcome the translational challenges with 2D cell cultures, 3D systems better model more complex cell-to-cell contact and nutrient levels present in a tumor, improving our understanding of cancer complexity. Despite this need, there are few reports on how 3D cultures differ metabolically from 2D cultures. METHODS: Well-described cell lines from colorectal cancer (HCT116 and SW948) and pancreatic ductal adenocarcinoma (Panc-1 and MIA-Pa-Ca-2) were used to investigate metabolism in 3D spheroid models. The metabolic variation under normal glucose conditions were investigated comparing 2D and 3D cultures by metabolic flux analysis and expression of key metabolic proteins. RESULTS: We find significant differences in glucose metabolism of 3D cultures compared to 2D cultures, both related to glycolysis and oxidative phosphorylation. Spheroids have higher ATP-linked respiration in standard nutrient conditions and higher non-aerobic ATP production in the absence of supplemented glucose. In addition, ATP-linked respiration is significantly inversely correlated with OCR/ECAR (p = 0.0096). Mitochondrial transport protein, TOMM20, expression decreases in all spheroid models compared to 2D, and monocarboxylate transporter (MCT) expression increases in 3 of the 4 spheroid models. CONCLUSIONS: In this study of CRC and PDAC cell lines, we demonstrate that glucose metabolism in 3D spheroids differs significantly from 2D cultures, both in terms of glycolytic and oxidative phosphorylation metrics. The metabolic phenotype shift from 2D to 3D culture in one cell line is greater than the phenotypic differences between each cell line and tumor source. The results herein emphasize the need to use 3D cell models for investigating nutrient utilization and metabolic flux for a better understanding of tumor metabolism and potential metabolic therapeutic targets.
RESUMO
The liver is the most important metabolic hub of endo and xenobiotic compounds. Pre-clinical studies using rodents to evaluate the toxicity of new drugs and cosmetics may produce inconclusive results for predicting clinical outcomes in humans, moreover being banned in the European Union. Human liver modeling using primary hepatocytes presents low reproducibility due to batch-to-batch variability, while iPSC-derived hepatocytes in monolayer cultures (2D) show reduced cellular functionality. Here we review the current status of the two most robust in vitro approaches in improving hepatocyte phenotype and metabolism while mimicking the hepatic physiological microenvironment: organoids and liver-on-chip. Both technologies are reviewed in design and manufacturing techniques, following cellular composition and functionality. Furthermore, drug screening and liver diseases modeling efficiencies are summarized. Finally, organoid and liver-on-chip technologies are compared regarding advantages and limitations, aiming to guide the selection of appropriate models for translational research and the development of such technologies.
RESUMO
Neoplastic diseases are a leading cause of death worldwide accounting for 10 million mortalities in 2020. Despite constantly revised and improved therapeutic regimens, the number of fatal cases increases annually. Therefore, better preclinical models are needed to study tumorigenesis and assess new drugs. Although 2D cell cultures significantly contributed to the understanding of tumor biology, they present high clinical trial failure rates. This is because 2D cannot reproduce the intricate tumor architecture and multiple cell interactions.Nevertheless, novel 3D biofabrication technologies and 3D bioprinted tumor models successfully mirror the complexity of human tumors and are currently revolutionizing preclinical cancer research by using live cells encapsulated in a variety of biomaterials. Since bioinks possess excellent chemical and biophysical ECM-like characteristics, this allows for recreation of the intricate tumor-specific architecture with an unmatched level of control, accuracy, and reproducibility. The resulting cellular constructs approximate actual pathological microenvironment of the tumor and some key in vivo processes such as proliferation, differentiation, and metastasis. 3D bioprinted models of glioblastoma, cervical, ovarian, and breast cancer are already being successfully used to study tumorigenesis and cellular response to antitumor drugs. This success showcases the potential of these novel experimental platforms.