Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(21): 9318-9324, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677980

RESUMO

Nonvolatile reconfigurable transistors can be used to implement highly flexible and compact logic circuits with low power consumption in maintaining the configuration. In this paper, we build nonvolatile reconfigurable transistors based on 2D CuInP2S6/MoTe2 heterostructures. The ferroelectric polarization-induced electron and hole doping in the heterostructure are investigated. By introducing the ferroelectric doping into the source/drain contacts, we demonstrate reconfigurable Schottky barrier transistors, whose polarity (n-type or p-type) can be dynamically programmed, where the configuration is nonvolatile in nature. These transistors exhibit a tunable photoresponse, where the n-n doping state leads to negative photocurrent, whereas the p-p doping state gives rise to a positive photocurrent. The transistor with asymmetric (n-p or p-n) contacts exhibits a strong photovoltaic effect. These reconfigurable logic and optoelectronic transistors will enable a new type of device fabric for future computing systems and sensing networks.

2.
ACS Appl Mater Interfaces ; 13(20): 24250-24257, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974385

RESUMO

Monolayer transition-metal dichalcogenides (TMDs) have provided a platform to investigate the excitonic states at the two-dimensional (2D) limit. The inherent properties of excitons in TMDs, such as the photoluminescence quantum yield, the charge states, and even the binding energy, can be effectively controlled via electrostatic gating, selective carrier doping, or substrate dielectric engineering. Here, aiming for the nonvolatile electrical tunability of excitonic states and thereby the optical property of TMDs, we demonstrate a 2D ferroelectric heterostructure with monolayer MoSe2 and ultrathin CuInP2S6 (CIPS). In the heterostructure, the electric polarization of CIPS results in continuous, global, and large electronic modulation in monolayer MoSe2. With the saturated ferroelectric polarization of CIPS, electron-doped or hole-doped MoSe2 is realized in a single device. The carrier density tunability in the heterostructure is as high as 5 × 1012 cm-2. The nonvolatile behavior of these devices up to 3 months is also characterized. Our results provide a new and practical strategy for low-power consumption and agelong tunable optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA