Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(8): e202113077, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34877748

RESUMO

Designing zeolite catalysts with improved mass transport properties is crucial for restrictive networks of either one- or two-dimensional pore topologies. Here, we demonstrate the synthesis of finned ferrierite (FER), a commercial zeolite with two-dimensional pores, where protrusions on crystal surfaces behave as pseudo nanoparticles. Catalytic tests of 1-butene isomerization reveal a 3-fold enhancement of catalyst lifetime and an increase of 12 % selectivity to isobutene for finned samples compared to corresponding seeds. Electron tomography was used to confirm the identical crystallographic registry of fins and seeds. Time-resolved titration of Brønsted acid sites confirmed the improved mass transport properties of finned ferrierite compared to conventional analogues. These findings highlight the advantages of introducing fins through facile and tunable post-synthesis modification to impart material properties that are otherwise unattainable by conventional synthesis methods.

2.
Molecules ; 24(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426301

RESUMO

Two-dimensional aluminophosphate is an important precursor of phosphate-based zeolites; a new Sun Yat-sen University No. 6 (SYSU-6) with |Hada|2[Al2(HPO4)(PO4)2] has been synthesized in the hydrothermal synthesis with organic structure-directing agent (OSDA) of N,N,3,5-tetramethyladamantan-1-amine. In this paper, SYSU-6 is characterized by single-crystal/powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, infrared and UV Raman spectroscopy, solid-state 27Al, 31P and 13C magic angle spinning (MAS) NMR spectra, and elemental analysis. The single-crystal X-ray diffraction structure indicates that SYSU-6 crystallized in the space group P21/n, with a = 8.4119(3), b = 36.9876(12), c = 12.5674(3), α = 90°, ß = 108.6770(10)°, γ = 90°, V = 3704.3(2) Å3, Z = 4, R = 5.12%, for 8515 observed data (I > 2σ(I)). The structure has a new 4,12-ring layer framework topology linked by alternating AlO4 and PO4 tetrahedra. The organic molecules reside between the layers and are hydrogen-bonded to the inorganic framework. The new type of layer provides a greater opportunity to construct zeolite with novel topology.


Assuntos
Adamantano/química , Zeolitas/química , Adsorção , Catálise , Fracionamento Químico/métodos , Cristalografia por Raios X , Humanos , Microscopia Eletrônica de Varredura , Porosidade
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 4): 296-304, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37402162

RESUMO

The crystal chemistry of the natural microporous two-layer aluminosilicates (2D zeolites) latiumite and tuscanite is re-investigated based on new data on the chemical composition, crystal structures, and infrared and Raman spectra. The CO32--depleted and P- and H-enriched samples from Sacrofano paleovolcano, Lazio, Italy, are studied. Both minerals are monoclinic; latiumite P21, a = 12.0206 (3), b = 5.09502 (10), c = 10.8527 (3) Å, ß = 107.010 (3)°, V = 635.60 (3) Å3 and tuscanite P21/a, a = 23.9846 (9), b = 5.09694 (15), c = 10.8504 (4) Å, ß = 107.032 (4)°, V = 1268.26 (8) Å3. The obtained crystal chemical formulae (Z = 2 for both minerals) are [(H3O)0.48(H2O)0.24K0.28](Ca2.48K0.21Na0.21Sr0.06Mg0.04)(Si2.86Al2.14O11)[(SO4)0.70(PO4)0.20](CO3)0.10 for latiumite and [(H3O)0.96(H2O)0.58K0.46](Ca4.94K0.44Na0.45Sr0.09Mg0.08)(Si5.80Al4.20O22)[(SO4)1.53(PO4)0.33](CO3)0.14 for tuscanite. These minerals are dimorphous. Both latiumite and tuscanite show distinct affinity for the PO43- anion. Hydrolytic alteration of these minerals results in partial leaching of potassium accompanied by protonation and hydration which is an important precondition for the existence of ion/proton conductivity of related materials.

4.
Natl Sci Rev ; 8(7): nwaa236, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691688

RESUMO

The minimized diffusion limitation and completely exposed strong acid sites of the ultrathin zeolites make it an industrially important catalyst especially for converting bulky molecules. However, the structure-controlled and large-scale synthesis of the material is still a challenge. In this work, the direct synthesis of the single-layer MWW zeolite was demonstrated by using hexamethyleneimine and amphiphilic organosilane as structure-directing agents. Characterization results confirmed the formation of the single-layer MWW zeolite with high crystallinity and excellent thermal/hydrothermal stability. The formation mechanism was rigorously revealed as the balanced rates between the nucleation/growth of the MWW nanocrystals and the incorporation of the organosilane into the MWW unit cell, which is further supported by the formation of MWW nanosheets with tunable thickness via simply changing synthesis conditions. The commercially available reagents, well-controlled structure and the high catalytic stability for the alkylation of benzene with 1-dodecene make it an industrially important catalyst.

5.
Materials (Basel) ; 13(8)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290625

RESUMO

Zeolites are generally defined as three-dimensional (3D) crystalline microporous aluminosilicates in which silicon (Si4+) and aluminum (Al3+) are coordinated tetrahedrally with oxygen to form large negative lattices and consequent Brønsted acidity. Two-dimensional (2D) zeolite nanosheets with single-unit-cell or near single-unit-cell thickness (~2-3 nm) represent an emerging type of zeolite material. The extremely thin slices of crystals in 2D zeolites produce high external surface areas (up to 50% of total surface area compared to ~2% in micron-sized 3D zeolite) and expose most of their active sites on external surfaces, enabling beneficial effects for the adsorption and reaction performance for processing bulky molecules. This review summarizes the structural properties of 2D layered precursors and 2D zeolite derivatives, as well as the acidity properties of 2D zeolite derivative structures, especially in connection to their 3D conventional zeolite analogues' structural and compositional properties. The timeline of the synthesis and recognition of 2D zeolites, as well as the structure and composition properties of each 2D zeolite, are discussed initially. The qualitative and quantitative measurements on the acid site type, strength, and accessibility of 2D zeolites are then presented. Future research and development directions to advance understanding of 2D zeolite materials are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA