Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Luminescence ; 38(5): 568-575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929687

RESUMO

In the current study, α-Bi2 O3 and ß-Bi2 O3 were synthesised using a one-step, novel, solid-solid combustion technique. The reaction rate was increased with the use of microwaves (molecular heating) compared to direct or indirect heating. A strong relationship was observed between the fuel, polymorphic structure, shape and optical properties of the synthesised Bi2 O3 . Photoluminescence studies reveal that two major visible emissions are observed for all samples. The two emissions are distinct with a broad peak in blue and a narrow peak in green. The intensity of the green characteristic emission depends strongly on the heating method used for synthesis and is more intense for microwave-synthesised samples.


Assuntos
Micro-Ondas
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047739

RESUMO

Phenols are widely used in industries despite their toxicity, which requires governments to limit their concentration in water to 5 mg/L before discharge to the city sewer. Thus, it is essential to develop a rapid, simple, and low-cost detection method for phenol. This study explored two pathways of peroxidase immobilization to develop a phenol detection system: peroxidase encapsulation into polyelectrolyte microcapsules and peroxidase captured by CaCO3. The encapsulation of peroxidase decreased enzyme activity by 96%; thus, this method cannot be used for detection systems. The capturing process of peroxidase by CaCO3 microspherulites did not affect the maximum reaction rate and the Michaelis constant of peroxidase. The native peroxidase-Vmax = 109 µM/min, Km = 994 µM; CaCO3-peroxidase-Vmax = 93.5 µM/min, Km = 956 µM. Ultimately, a reusable phenol detection system based on CaCO3 microparticles with immobilized peroxidase was developed, capable of detecting phenol in the range of 700 ng/mL to 14 µg/mL, with an error not exceeding 5%, and having a relatively low cost and production time. The efficiency of the system was confirmed by determining the content of phenol in a paintwork product.


Assuntos
Peroxidase , Fenol , Fenóis , Peroxidases , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/metabolismo
3.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527060

RESUMO

BaTiO3 is one of the most widely used ceramic components in capacitor formulation due to its exceptional ferroelectric properties. The structural transition from the ferroelectric tetragonal to the paraelectric cubic phase has been studied in both nano- and micro-BaTiO3 particles. Several experimental techniques were employed for characterization purposes (X-ray diffraction-XRD, laser Raman spectroscopy-LRS, differential scanning calorimetry-DSC and broadband dielectric spectroscopy-BDS). All gave evidence for the structural transition from the polar tetragonal to the non-polar cubic phase in both nano- and micro-BaTiO3 particles. Variation of Full Width at Half Maximum (FWHM) with temperature in XRD peaks was employed for the determination of the critical Curie temperature (Tc). In micro-BaTiO3 particles (Tc) lies close to 120 °C, while in nanoparticles the transition is complicated due to the influence of particles' size. Below (Tc) both phases co-exist in nanoparticles. (Tc) was also determined via the temperature dependence of FWHM and found to be 115 °C. DSC, LRS and BDS provided direct results, indicating the transition in both nano- and micro-BaTiO3 particles. Finally, the 15 parts per hundred resin per weight (phr) BaTiO3/epoxy nanocomposite revealed also the transition through the peak formation at approximately 130 °C in the variation of FWHM with temperature. The present work introduces, for the first time, a qualitative tool for the determination and study of the ferroelectric to paraelectric structural transition in both nano- and micro-ferroelectric particles and in their nanocomposites. Moreover, its novelty lies on the effect of crystals' size upon the ferroelectric to the paraelectric phase transition and its influence on physical properties of BaTiO3.


Assuntos
Compostos de Bário/química , Eletrônica , Compostos de Epóxi/química , Nanocompostos/química , Nanopartículas/química , Termodinâmica , Titânio/química , Tamanho da Partícula , Transição de Fase , Análise Espectral Raman , Temperatura
4.
J Environ Sci (China) ; 31: 194-202, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968273

RESUMO

Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride) (PVDF) membrane was prepared with alumina (Al2O3) nanoparticle addition. Pd/Fe nanoparticles (NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid (DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.


Assuntos
Óxido de Alumínio/química , Ferro/química , Nanopartículas Metálicas/química , Paládio/química , Polivinil/química , Ácido Dicloroacético/química , Membranas Artificiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular
5.
Int J Biol Macromol ; 255: 128254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992922

RESUMO

Deacidification and strengthening play pivotal roles in the enduring conservation of aged paper. In this study, we innovatively propose the use of reduced cellulose nanofibrils (rCNFs) and aminopropyltriethoxysilane modified CaCO3 (APTES-CaCO3) for preserving aged paper. The sodium borohydride-mediated reduction of cellulose nanofibrils diminished the carboxylate content and O/C mass ratio in rCNFs, which in turn amplified the swelling of rCNFs and their crosslinking potential with paper fibers. By introducing amino groups to the CaCO3 surface, the dispersion property of APTES-CaCO3 in organic solvent was enhanced, as well as the deacidification ability and the retention on the paper. The distinct structures and attributes of rCNFs and APTES-CaCO3 were characterized by various techniques. Following the conservation application to aged paper using this system, a desired internal pH value of 8.31 and an alkaline reserve of 0.8056 mol/kg were achieved, alongside a 33.6 % elevation in the tensile index. The aging resistance of the treated paper was evaluated by dry heat and hygrothermal aging tests. The findings revealed that the treatment bestowed the treated paper with outstanding anti-aging properties, notably in terms of internal pH, alkaline reserve and mechanical robustness. Additionally, the paper's brightness was amplified, while its color alteration remained negligible.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Resistência à Tração , Propilaminas
6.
ACS Appl Mater Interfaces ; 16(35): 46703-46718, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39177497

RESUMO

Passive daytime radiative cooling (PDRC) technology has received a great deal of attention in the field of energy efficiency and environmental protection as a sustainable technology and a large-scale and promising solution to mitigate the environmental impact of global warming. In this study, we prepared PDRC material by combining FEP with modified Al2O3 particles and using the method of spray combined with phase separation. The synergistic effect of the formed surface micronanostructures, combined with the molecular vibration of FEP and the phonon polarization resonance of Al2O3, further improves the optical performance of the PDRC coating. The PDRC coating has an average reflectivity of 0.96 in the solar spectral band (0.3-2.5 µm) and an average emissivity of 0.963 in the atmospheric window band ((8-13 µm). In addition, the PDRC coating had good hydrophobicity, and its water contact angle (WAC) reached 159.3°. Under direct sunlight conditions, PDRC materials have a good temperature drop (4.9 °C) compared to ambient temperatures and radiative cooling power (81.2 W/m2). The prepared coating maintains superhydrophobicity and excellent cooling performance when soaked in solutions of different pH values and UV radiation, which was of great significance for sustainable applications. Our work provides a form of long-term cooling that can be effectively implemented in green and energy-efficient buildings.

7.
Environ Technol ; : 1-19, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940267

RESUMO

In this study, we experimentally investigate the production and characterization of CaCO3 particles through the carbonation process of Ca(OH)2 and evaluate their potential application in removing organic matter. The CaCO3 particles were characterized using BET, SEM-EDX, FT-IR, particle size, and XRD techniques. Adsorption of organic matter was studied using synthetic solutions and samples from two surface water sources. Experiments were conducted at room temperature with adsorbent dosages ranging from 1.3 to 21.5 g/L, initial dissolved organic carbon concentrations between 2.5 and 20 mg/L (initial loading: 0.1-14.6 mgDOC/gCaCO3), and a contact time of at least 5 minutes. We observed a removal efficiency of 70-80% for DOC and 90-95% for UV254 at a low concentration of organic matter (humic acids, 2.5 mgDOC/L). At a concentration of 5.0 mg DOC/L, we achieved (i) 70-90% DOC removal for humic acid, (ii) 50-65% DOC removal for one surface water sample with SUVA254 of 2.4 L/mg·m, and (iii) 20-35% DOC removal for another surface water sample with SUVA254 of 4.3 L/mg·m. Furthermore, we investigated the performance of the prepared particles in repeated usage for organics removal. In conclusion, our findings propose areas for future research including optimizing particle cycling within the reaction environment, exploring particle utilization in reactors such as an up-flow particle bed, and assessing potential applications in a membrane contactor. The environmentally friendly and non-toxic nature of CaCO3 particles emphasizes their significance in future research and applications.

8.
Biophys J ; 105(5): 1276-84, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24010671

RESUMO

The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents.


Assuntos
Elétrons , Líquido Extracelular/metabolismo , Modelos Biológicos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo
9.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242953

RESUMO

High cost, low crystallinity, and low-melt strength limit the market application of the biodegradable material poly (butylene adipate-co-terephthalate) (PBAT), which has become a major obstacle to the promotion of PBAT products. Herein, with PBAT as resin matrix and calcium carbonate (CaCO3) as filler, PBAT/CaCO3 composite films were designed and prepared with a twin-screw extruder and single-screw extrusion blow-molding machine designed, and the effects of particle size (1250 mesh, 2000 mesh), particle content (0-36%) and titanate coupling agent (TC) surface modification of CaCO3 on the properties of PBAT/CaCO3 composite film were investigated. The results showed that the size and content of CaCO3 particles had a significant effect on the tensile properties of the composites. The addition of unmodified CaCO3 decreased the tensile properties of the composites by more than 30%. TC-modified CaCO3 improved the overall performance of PBAT/CaCO3 composite films. The thermal analysis showed that the addition of titanate coupling agent 201 (TC-2) increased the decomposition temperature of CaCO3 from 533.9 °C to 566.1 °C, thereby enhancing the thermal stability of the material. Due to the heterogeneous nucleation of CaCO3, the addition of modified CaCO3 raised the crystallization temperature of the film from 97.51 °C to 99.67 °C and increased the degree of crystallization from 7.09% to 14.83%. The tensile property test results showed that the film reached the maximum tensile strength of 20.55 MPa with the addition of TC-2 at 1%. The results of contact angle, water absorption, and water vapor transmission performance tests showed that TC-2 modified CaCO3 increased the water contact angle of the composite film from 85.7° to 94.6° and decreased the water absorption from 13% to 1%. When the additional amount of TC-2 was 1%, the water vapor transmission rate of the composites was reduced by 27.99%, and the water vapor permeability coefficient was reduced by 43.19%.

10.
ACS Appl Mater Interfaces ; 15(1): 2486-2497, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580635

RESUMO

The self-assembling behavior of peptides and derivatives is crucial in the natural process to construct various architectures and achieve specific functions. However, the surface or interfacial self-assembly, in particular, on the surface of micro- or nanoparticles is even less systematically investigated. Here, uniform porous CaCO3 microparticles were prepared with different charged, hydrophobic and hydrophilic surfaces to assess the self-assembling behavior of dipeptides composed of various sequences. Experimental results indicate that dipeptides with a negative charge in an aqueous solution preferred to self-assemble on the hydrophobic and positively charged surface of CaCO3 particles, which can be ascribed to the electrostatic and hydrophobic interaction between dipeptides and CaCO3 particles. Meanwhile, the Log p (lipid-water partition coefficient) of dipeptides has a significant effect on the self-assembling behavior of dipeptides on the surface of porous CaCO3; dipeptides with high Log p preferred to self-assemble on the surface of CaCO3 particles, resulting in the improved cell internalization efficiency of particles with low cytotoxicity. After loading with a model drug (doxorubicin), the particles show obvious antitumor activity in animal experiments and can reduce Dox side effects effectively.


Assuntos
Dipeptídeos , Nanopartículas , Animais , Porosidade , Peptídeos , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Água
11.
Adv Sci (Weinh) ; 10(25): e2207208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37431694

RESUMO

Thermal stability determines a material's ability to maintain its performance at desired service temperatures. This is especially important for aluminum (Al) alloys, which are widely used in the commercial sector. Herein, an ultra-strong and heat-resistant Al-Cu composite is fabricated with a structure of nano-AlN and submicron-Al2 O3 particles uniformly distributed in the matrix. At 350 °C, the (8.2AlN+1Al2 O3 )p /Al-0.9Cu composite achieves a high strength of 187 MPa along with a 4.6% ductility under tension. The high strength and good ductility benefit from strong pinning effect on dislocation motion and grain boundary sliding by uniform dispersion of nano-AlN particles, in conjunction with the precipitation of Guinier-Preston (GP) zones, enhancing strain hardening capacity during plastic deformation. This work can expand the selection of Al-Cu composites for potential applications at service temperatures as high as ≈350 °C.

12.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769993

RESUMO

This work presents an energy-efficient, cheap, and rapid production method of a metal-ceramic preform with open porosity suitable for liquid metal infiltration and filtration applications. It is based on cold isostatic pressing of a mixture of relatively hard Ni and Al2O3 powders with the addition of small amount of Al powders, acting as a binding agent. Open porosity is primarily controlled by Al2O3 particles partially separating Ni particles from mutual contacts. Cold isostatic pressed green compacts were subjected to thermal oxidation by heating in air to 600 °C, 700 °C, and 800 °C. The weight gain and open porosity of oxidized compacts were examined. The chemical composition and microstructure were analyzed by SEM-EDS and XRD techniques. The stability of preforms and the effect of thermal cycling on the open porosity were tested by thermal cycling in an inert Ar atmosphere in the temperature range up to 800 °C. It appeared that, in addition to NiO being an expected product of oxidation, Ni aluminides and spinel particles also played an important role in inter-particle bonding formation. Ni-NiO porous composites resist chemical corrosion and exhibit structural and chemical stability at higher temperatures and admixed Al2O3 particles do not deteriorate them. After subsequent infiltration with Al, it can offer a lower density than other materials, which could result in lower energy consumption, which is highly needed in industries such as the automotive industry.

13.
ACS Appl Mater Interfaces ; 15(24): 29406-29412, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37286381

RESUMO

The green organic semiconductor, tris-(8-hydroxyquinoline)aluminum (Alq3), was hybridized with DNA growing in the shape of hexagonal prismatic crystals. In this study, we applied hydrodynamic flow to the fabrication of Alq3 crystals doped with DNA molecules. The hydrodynamic flow in the Taylor-Couette reactor induced nanoscale pores in the Alq3 crystals, especially at the side part of the particles. The particles exhibited distinctly different photoluminescence emissions divided into three parts compared to common Alq3-DNA hybrid crystals. We named this particle a "three-photonic-unit". After treatment with complementary target DNA, the three-photonic-unit Alq3 particles doped with DNAs were found to emit depressed luminescence from side parts of the particles. This novel phenomenon would expand the technological value of these hybrid crystals with divided photoluminescence emissions toward a wider range of bio-photonic applications.

14.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299705

RESUMO

α-Al2O3 nanoparticles can enter a micro-arc oxidation coating and participate in the coating-formation process through chemical reaction or physical-mechanical combination in the electrolyte. The prepared coating has high strength, good toughness and excellent wear and corrosion resistance. In this paper, 0, 1, 3 and 5 g/L of α-Al2O3 nanoparticles were added to a Na2SiO3-Na(PO4)6 electrolyte to study the effect on the microstructure and properties of a Ti6Al4V alloy micro-arc oxidation coating. The thickness, microscopic morphology, phase composition, roughness, microhardness, friction and wear properties and corrosion resistance were characterized using a thickness meter, scanning electron microscope, X-ray diffractometer, laser confocal microscope, microhardness tester and electrochemical workstation. The results show that surface quality, thickness, microhardness, friction and wear properties and corrosion resistance of the Ti6Al4V alloy micro-arc oxidation coating were improved by adding α-Al2O3 nanoparticles to the electrolyte. The nanoparticles enter the coatings by physical embedding and chemical reaction. The coatings' phase composition mainly includes Rutile-TiO2, Anatase-TiO2, α-Al2O3, Al2TiO5 and amorphous phase SiO2. Due to the filling effect of α-Al2O3, the thickness and hardness of the micro-arc oxidation coating increase, and the surface micropore aperture size decreases. The roughness decreases with the increase of α-Al2O3 additive concentration, while the friction wear performance and corrosion resistance are improved.

15.
J Colloid Interface Sci ; 651: 558-566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562298

RESUMO

The development of a low-cost, high-capacity, and insertion-type anode is key for promoting "rocking chair" zinc-ion batteries. Herein, commercial Bi2O3 (BiO) particles are transformed into Bi2O2Se@Bi4O8Se (BiOSe) nanosheets through a simple selenylation process. The change in morphology from commercial BiO particle to BiOSe nanosheet leads to an increased specific surface area of the material. The enhanced electronic/ionic conductivity results in its excellent electrochemical kinetics. Ex situ XRD and XPS tests prove the intercalation-type mechanism of BiO and BiOSe as well as the superior electrochemical reversibility of BiOSe compared to BiO. Furthermore, the H+/Zn2+ co-insertion mechanism of BiOSe is revealed. This makes BiOSe to have low discharge plateaus of 0.38/0.68 V, a high reversible capacity of 182 mA h g-1 at 0.1 A g-1, and a long cyclic life of 500 cycles at 1 A g-1. Besides, the BiOSe//MnO2 "rocking chair" zinc-ion battery offers a high capacity of ≈90 mA h g-1 at 0.2 A g-1. This work provides a reference for turning commercial material into high-performance anode for "rocking chair" zinc-ion batteries.

16.
Pharmaceutics ; 15(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004553

RESUMO

The widespread application of calcium carbonate is determined by its high availability in nature and simplicity of synthesis in laboratory conditions. Moreover, calcium carbonate possesses highly attractive physicochemical properties that make it suitable for a wide range of biomedical applications. This review provides a conclusive analysis of the results on using the tunable vaterite metastability in the development of biodegradable drug delivery systems and therapeutic vehicles with a controlled and sustained release of the incorporated cargo. This manuscript highlights the nuances of vaterite recrystallization to non-porous calcite, dissolution at acidic pH, biodegradation at in vivo conditions and control over these processes. This review outlines the main benefits of vaterite instability for the controlled liberation of the encapsulated molecules for the development of biodegradable natural and synthetic polymeric materials for biomedical purposes.

17.
J Funct Biomater ; 13(3)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35997443

RESUMO

Biomaterials are used as implants for bone and dental disabilities. However, wear particles from the implants cause osteolysis following total joint arthroplasty (TJA). Ceramic implants are considered safe and elicit a minimal response to cause periprosthetic osteolysis. However, few reports have highlighted the adverse effect of ceramic particles such as alumina (Al2O3) on various cell types. Hence, we aimed to investigate the effect of Al2O3 particles on osteoprogenitors. A comparative treatment of Al2O3, Ti, and UHMWPE particles to osteoprogenitors at a similar concentration of 200 µg/mL showed that only Al2O3 particles were able to suppress the early and late differentiation markers of osteoprogenitors, including collagen synthesis, alkaline phosphatase (ALP) activity and mRNA expression of Runx2, OSX, Col1α, and OCN. Al2O3 particles even induced inflammation and activated the NFkB signaling pathway in osteoprogenitors. Moreover, bone-forming signals such as the WNT/ß-catenin signaling pathway were inhibited by the Al2O3 particles. Al2O3 particles were found to induce the mRNA expression of WNT/ß-catenin signaling antagonists such as DKK2, WIF, and sFRP1 several times in osteoprogenitors. Taken together, this study highlights a mechanistic view of the effect of Al2O3 particles on osteoprogenitors and suggests therapeutic targets such as NFĸB and WNT signaling pathways for ceramic particle-induced osteolysis.

18.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458002

RESUMO

Exposure to Cr(VI) compounds has been consistently associated with genotoxicity and carcinogenicity, whereas Cr(III) is far less toxic, due to its poor cellular uptake. However, contradictory results have been published in relation to particulate Cr2O3. The aim of the present study was to investigate whether Cr(III) particles exerted properties comparable to water soluble Cr(III) or to Cr(VI), including two nano-sized and one micro-sized particles. The morphology and size distribution were determined by TEM, while the oxidation state was analyzed by XPS. Chromium release was quantified via AAS, and colorimetrically differentiated between Cr(VI) and Cr(III). Furthermore, the toxicological fingerprints of the Cr2O3 particles were established using high-throughput RT-qPCR and then compared to water-soluble Cr(VI) and Cr(III) in A549 and HaCaT cells. Regarding the Cr2O3 particles, two out of three exerted only minor or no toxicity, and the gene expression profiles were comparable to Cr(III). However, one particle under investigation released considerable amounts of Cr(VI), and also resembled the toxicity profiles of Cr(VI); this was also evident in the altered gene expression related to DNA damage signaling, oxidative stress response, inflammation, and cell death pathways. Even though the highest toxicity was found in the case of the smallest particle, size did not appear to be the decisive parameter, but rather the purity of the Cr(III) particles with respect to Cr(VI) content.

19.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556704

RESUMO

To meet aero-engine aluminum skirt requirements, an experiment was carried out using Al-Nb-B2O3-CuO as the reaction system and a 6063 aluminum alloy melt as the reaction medium for a contact reaction, and 6063 aluminum matrix composites containing in situ particles were prepared with the near-liquid-phase line-casting method after the reaction was completed. The effects of the reactant molar ratio and the preheating temperature on the in situ reaction process and products were explored in order to determine the influence of in situ-reaction-product features on the organization and the qualities of the composites. Thermodynamic calculations, DSC analysis, and experiments revealed that the reaction could continue when the molar ratio of the reactants of Al-Nb-B2O3-CuO was 6:1:1:1.5. A kinetic study revealed that the Al thermal reaction in the system produced Al2O3 and [B], and the [B] atoms interacted with Nb to generate NbB2. With increasing temperature, the interaction between the Nb and the AlB2 produced hexagonal NbB2 particles with an average longitudinal size of 1 µm and subspherical Al2O3 particles with an average longitudinal size of 0.2 µm. The microstructure of the composites was reasonably fine, with an estimated equiaxed crystal size of around 22 µm, a tensile strength of 170 MPa, a yield strength of 135 MPa, an elongation of 13.4%, and a fracture energy of 17.05 × 105 KJ/m3, with a content of 2.3 wt% complex-phase particles. When compared to the matrix alloy without addition, the NbB2 and Al2O3 particles produced by the in situ reaction had a significant refinement effect on the microstructure of the alloy, and the plasticity of the composite in the as-cast state was improved while maintaining higher strength and better overall mechanical properties, allowing for industrial mass production.

20.
Biomed Mater ; 16(5)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34340221

RESUMO

CaCO3particles, due to their unique properties such as biodegradation, pH-sensitivity, and porous surface, have been widely used as carrier materials for delivering drugs, genes, vaccines, and other bioactive molecules. In these applications, CaCO3particles are often administered intravenously. In this sense, the interaction between CaCO3particles and blood components plays a key role in their delivery efficacy and biosafety, though the hemocompatibility of CaCO3particles has not been evaluated until now. Deficiency in the biosafety information has delayed the clinical use of CaCO3particles in delivery systems. In this work, we investigated the biosafety of CaCO3particles, focusing on theirin vitroandin vivoeffects on key blood components (red blood cells, platelets, etc) and coagulation functions. We foundin vitrothat high concentrations of CaCO3particles can cause the aggregation and hemolysis of red blood cells, with platelet activation and coagulation prolongation.In vivo, we found that intravenously injected CaCO3particles at 50 mg kg-1significantly disturbed the red blood cells, and platelet-related blood routine indexes, but did not induce visible abnormalities in the tissue structures of the key organs. Overall, these effects may be due to the enormous adsorption capability of the porous surface of CaCO3particles. 0.1 mg ml-1of the CaCO3particles exhibit excellent compatibility for their practical applications. These results would be expected to greatly promote thein vivoapplications and clinical use of CaCO3particles in biomedicine.


Assuntos
Materiais Biocompatíveis , Carbonato de Cálcio , Hemólise/efeitos dos fármacos , Teste de Materiais , Nanopartículas , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Carbonato de Cálcio/efeitos adversos , Carbonato de Cálcio/química , Eritrócitos/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Ativação Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA