Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
1.
Cell ; 183(5): 1420-1435.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159857

RESUMO

Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.


Assuntos
Bancos de Espécimes Biológicos , Tumores Neuroendócrinos/patologia , Organoides/patologia , Animais , Cromossomos Humanos/genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Masculino , Camundongos , Modelos Genéticos , Mutação/genética , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
2.
Cell ; 175(6): 1607-1619.e15, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500539

RESUMO

In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.


Assuntos
Antígenos de Diferenciação/biossíntese , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Hepatócitos/metabolismo , Esferoides Celulares/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular Transformada , Células Hep G2 , Hepatócitos/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/lesões , Fígado/metabolismo , Camundongos Knockout , Esferoides Celulares/transplante , Fatores de Tempo
3.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373830

RESUMO

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Piperazinas/química , Piperazinas/uso terapêutico , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas/química , Quinazolinas/uso terapêutico
4.
Mol Cell ; 80(5): 828-844.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128871

RESUMO

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Proliferação de Células , Ferroptose , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Células A549 , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Genes Dev ; 32(11-12): 737-739, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29921661

RESUMO

Mutations in PKD1 and PKD2 are the leading cause of autosomal dominant polycystic kidney disease (ADPKD). In this issue of Genes & Development, a report by Cai and colleagues (pp. 781-793) reveals new insight into the molecular basis by which PKD1 deficiency leads to cystic kidney pathogenesis. By using extensive mouse genetic analyses coupled with in vitro cystic assays, the investigators delineate a RhoA-YAP-c-Myc signaling axis as a key downstream from PKD1 deficiency in ADPKD pathogenesis. Their findings provide evidence that the Hippo pathway could be a potential target for treating ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Camundongos , Mutação , Fosfoproteínas , Transdução de Sinais , Canais de Cátion TRPP/genética , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP
6.
Genes Dev ; 32(11-12): 781-793, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891559

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder caused by mutations in PKD1 or PKD2 and affects one in 500-1000 humans. Limited treatment is currently available for ADPKD. Here we identify the Hippo signaling effector YAP and its transcriptional target, c-Myc, as promoters of cystic kidney pathogenesis. While transgenic overexpression of YAP promotes proliferation and tubule dilation in mouse kidneys, loss of YAP/TAZ or c-Myc suppresses cystogenesis in a mouse ADPKD model resulting from Pkd1 deficiency. Through a comprehensive kinase inhibitor screen based on a novel three-dimensional (3D) culture of Pkd1 mutant mouse kidney cells, we identified a signaling pathway involving the RhoGEF (guanine nucleotide exchange factor) LARG, the small GTPase RhoA, and the RhoA effector Rho-associated kinase (ROCK) as a critical signaling module between PKD1 and YAP. Further corroborating its physiological importance, inhibition of RhoA signaling suppresses cystogenesis in 3D culture of Pkd1 mutant kidney cells as well as Pkd1 mutant mouse kidneys in vivo. Taken together, our findings implicate the RhoA-YAP-c-Myc signaling axis as a critical mediator and potential drug target in ADPKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Rim/fisiopatologia , Fosfoproteínas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Rim/citologia , Rim/patologia , Camundongos , Fosfoproteínas/genética , Doenças Renais Policísticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
7.
Semin Cell Dev Biol ; 147: 58-69, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732105

RESUMO

Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.


Assuntos
Técnicas de Cultura de Células , Engenharia Tecidual , Animais , Humanos , Técnicas de Cocultura , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Células Endoteliais , Mamíferos
8.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35997536

RESUMO

Complex organ development depends on single lumen formation and its expansion during tubulogenesis. This can be achieved by correct mitotic spindle orientation during cell division, combined with luminal fluid filling that generates hydrostatic pressure. Using a human 3D cell culture model, we have identified two regulators of these processes. We find that pleckstrin homology leucine-rich repeat protein phosphatase (PHLPP) 2 regulates mitotic spindle orientation, and thereby midbody positioning and maintenance of a single lumen. Silencing the sole PHLPP family phosphatase in Drosophila melanogaster, phlpp, resulted in defective spindle orientation in Drosophila neuroblasts. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) is the main channel regulating fluid transport in this system, stimulated by phosphorylation by protein kinase A and inhibited by the AMP-activated protein kinase AMPK. During lumen expansion, CFTR remains open through the action of PHLPP1, which stops activated AMPK from inhibiting ion transport through CFTR. In the absence of PHLPP1, the restraint on AMPK activity is lost and this tips the balance in the favour of channel closing, resulting in the lack of lumen expansion and accumulation of mucus.


Assuntos
Proteínas Quinases Ativadas por AMP , Regulador de Condutância Transmembrana em Fibrose Cística , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação
9.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314540

RESUMO

Organoids have become one of the fastest progressing and applied models in biological and medical research, and various organoids have now been developed for most of the organs of the body. Here, we review the methods developed to generate pancreas organoids in vitro from embryonic, fetal and adult cells, as well as pluripotent stem cells. We discuss how these systems have been used to learn new aspects of pancreas development, regeneration and disease, as well as their limitations and potential for future discoveries.


Assuntos
Pesquisa Biomédica , Células-Tronco Pluripotentes , Organoides , Organogênese , Pâncreas
10.
EMBO Rep ; 24(6): e56818, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042686

RESUMO

Immature dendritic cells (iDCs) migrate in microenvironments with distinct cell and extracellular matrix densities in vivo and contribute to HIV-1 dissemination and mounting of antiviral immune responses. Here, we find that, compared to standard 2D suspension cultures, 3D collagen as tissue-like environment alters iDC properties and their response to HIV-1 infection. iDCs adopt an elongated morphology with increased deformability in 3D collagen at unaltered activation, differentiation, cytokine secretion, or responsiveness to LPS. While 3D collagen reduces HIV-1 particle uptake by iDCs, fusion efficiency is increased to elevate productive infection rates due to elevated cell surface exposure of the HIV-1-binding receptor DC-SIGN. In contrast, 3D collagen reduces HIV transfer to CD4 T cells from iDCs. iDC adaptations to 3D collagen include increased pro-inflammatory cytokine production and reduced antiviral gene expression in response to HIV-1 infection. Adhesion to a 2D collagen matrix is sufficient to increase iDC deformability, DC-SIGN exposure, and permissivity to HIV-1 infection. Thus, mechano-physical cues of 2D and 3D tissue-like collagen environments regulate iDC function and shape divergent roles during HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citocinas/metabolismo , Colágeno/metabolismo , Antivirais , Células Dendríticas
11.
Cell Mol Life Sci ; 81(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212428

RESUMO

Although amplifications and mutations in receptor tyrosine kinases (RTKs) act as bona fide oncogenes, in most cancers, RTKs maintain moderate expression and remain wild-type. Consequently, cognate ligands control many facets of tumorigenesis, including resistance to anti-RTK therapies. Herein, we show that the ligands for the RTKs MET and RON, HGF and HGFL, respectively, are synthesized as inactive precursors that are activated by cellular proteases. Our newly generated HGF/HGFL protease inhibitors could overcome both de novo and acquired cetuximab resistance in colorectal cancer (CRC). Conversely, HGF overexpression was necessary and sufficient to induce cetuximab resistance and loss of polarity. Moreover, HGF-induced cetuximab resistance could be overcome by the downstream MET inhibitor, crizotinib, and upstream protease inhibitors. Additionally, HAI-1, an endogenous inhibitor of HGF proteases, (i) was downregulated in CRC, (ii) exhibited increased genomic methylation that correlated with poor prognosis, (iii) HAI-1 expression correlated with cetuximab response in a panel of cancer cell lines, and (iv) exogenous addition of recombinant HAI-1 overcame cetuximab resistance in CC-HGF cells. Thus, we describe a targetable, autocrine HAI-1/Protease/HGF/MET axis in cetuximab resistance in CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Cetuximab/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inibidores de Proteases/farmacologia , Peptídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia
12.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955339

RESUMO

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Assuntos
Matriz Extracelular , Pulmão , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/metabolismo
13.
Lab Invest ; 104(7): 102075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729352

RESUMO

Keratins (KRTs) are intermediate filament proteins in epithelial cells, and they are important for cytoskeletal organization. KRT6A, classified as a type II KRT, is normally expressed in stratified squamous epithelium and squamous cell carcinomas. Little is known about the expression and role of KRT6A in adenocarcinomas. We investigated the clinicopathologic and molecular biological significance of KRT6A in colorectal adenocarcinoma. Immunostaining of colorectal adenocarcinoma cases treated at our institution demonstrated that KRT6A showed significantly stronger expression at the invasive front than that at the tumor center (P < .0001). The high KRT6A-expression cases (n = 47) tended to have a high budding grade associated with significantly worse prognoses. A multivariate analysis revealed that the KRT6A expression status was an independent prognostic factor for overall survival (P = .0004), disease-specific survival (P = .0097), and progression-free survival (P = .0033). The correlation between KRT6A and patient prognoses was also validated in an external cohort from a published data set. To determine the function of KRT6A in vitro, KRT6A was overexpressed in 3 colon cancer cell lines: DLD-1, SW620, and HCT 116. KRT6A overexpression increased migration and invasion in DLD-1 but did not in SW620 and HCT116. In 3-dimensional sphere-forming culture, KRT6A expression enhanced the irregular protrusion around the spheroid in DLD-1. Our findings in this study indicated that KRT6A expression is a valuable prognostic marker of colorectal cancer and KRT6A may be involved the molecular mechanism in the progression of invasive areas of colorectal cancer.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Queratina-6 , Invasividade Neoplásica , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Queratina-6/metabolismo , Linhagem Celular Tumoral , Prognóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/mortalidade , Biomarcadores Tumorais/metabolismo , Movimento Celular
14.
Cancer Sci ; 115(6): 1726-1737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532284

RESUMO

Tumor tissue is densely packed with cancer cells, non-cancerous cells, and ECM, forming functional structures. Cancer cells transfer extracellular vesicles (EVs) to modify surrounding normal cells into cancer-promoting cells, establishing a tumor-favorable environment together with other signaling molecules and structural components. Such tissue environments largely affect cancer cell properties, and so as EV-mediated cellular communications within tumor tissue. However, current research on EVs focuses on functional analysis of vesicles isolated from the liquid phase, including cell culture supernatants and blood draws, 2D-cultured cell assays, or systemic analyses on animal models for biodistribution. Therefore, we have a limited understanding of local EV transfer within tumor tissues. In this review, we discuss the need to study EVs in a physiological tissue context by summarizing the current findings on the impacts of tumor tissue environment on cancer EV properties and transfer and the techniques required for the analysis. Tumor tissue environment is likely to alter EV properties, pose physical barriers, interactions, and interstitial flows for the dynamics, and introduce varieties in the cell types taken up. Utilizing physiological experimental settings and spatial analyses, we need to tackle the remaining questions on physiological EV-mediated cancer-host cell interactions. Understanding cancer EV-mediated cellular communications in physiological tumor tissues will lead to developing interaction-targeting therapies and provide insight into EV-mediated non-cancerous cells and interspecies interactions.


Assuntos
Comunicação Celular , Vesículas Extracelulares , Neoplasias , Microambiente Tumoral , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Animais
15.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239052

RESUMO

Growing evidence indicates that p53 (encoded by TP53) has a crucial role in normal tissue development. The role of the canonical p53 (p53α) and its 12 isoforms in development and homeostasis of healthy tissue remains poorly understood. Here, we demonstrate that the Δ133p53 isoforms, the three short isoforms of p53, respond specifically to laminin-111 and play an important regulatory role in formation of mammary organoids in concert with p53α. We demonstrate that down-modulation of Δ133p53 isoforms leads to changes in gene expression of the extracellular matrix molecules fibronectin (FN), EDA+-FN, laminin α5 and laminin α3 in human breast epithelial cells. These changes resulted in increased actin stress fibers and enhanced migratory behavior of cells in two-dimensional culture. We found that α5ß1-integrin coupled with the extracellularly deposited EDA+-FN activates the Akt signaling pathway in three-dimensional (3D) culture when Δ133p53 is dysregulated. Cells that do not express detectable Δ133p53 isoforms or express low levels of these isoforms failed to form polarized structures in 3D. These results uncover that Δ133p53 isoforms coordinate expression and deposition of organ-specific ECM molecules that are critical for maintenance of tissue architecture and function.


Assuntos
Matriz Extracelular , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Morfogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Expressão Gênica
16.
Cell Tissue Res ; 396(1): 57-69, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326636

RESUMO

3D bioengineered skeletal muscle macrotissues are increasingly important for studies of cell biology and development of therapeutics. Tissues derived from immortalized cells obtained from patient samples, or from pluripotent stem cells, can be co-cultured with motor-neurons to create models of human neuromuscular junctions in culture. In this study, we present foundational work on 3D cultured muscle ultrastructure, with and without motor neurons, which is enabled by the development of a new co-culture platform. Our results show that tissues from Duchenne muscular dystrophy patients are poorly organized compared to tissues grown from healthy donor and that the presence of motor neurons invariably improves sarcomere organization. Electron micrographs show that in the presence of motor neurons, filament directionality, banding patterns, z-disc continuity, and the appearance of presumptive SSR and T-tubule profiles all improve in healthy, DMD-, and iPSC-derived muscle tissue. Further work to identify the underlying defects of DMD tissue disorganization and the mechanisms by which motor neurons support muscle are likely to yield potential new therapeutic approaches for treating patients suffering from Duchenne muscular dystrophy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Elétrons , Músculo Esquelético , Neurônios Motores , Microscopia Eletrônica , Distrofina
17.
J Anat ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400563

RESUMO

The enthesis, the specialized junction between tendon and bone, is a common site of injury. Although notoriously difficult to repair, advances in interfacial tissue engineering techniques are being developed for restorative function. Most notably are 3D in vitro co-culture models, built to recreate the complex heterogeneity of the native enthesis. While cell and matrix properties are often considered, there has been little attention given to native enthesis anatomical morphometrics and replicating these to enhance clinical relevance. This study focuses on the flexor digitorum profundus (FDP) tendon enthesis and, by combining anatomical morphometrics with computer-aided design, demonstrates the design and construction of an accurate and scalable model of the FDP enthesis. Bespoke 3D-printed mould inserts were fabricated based on the size, shape and insertion angle of the FDP enthesis. Then, silicone culture moulds were created, enabling the production of bespoke anatomical culture zones for an in vitro FDP enthesis model. The validity of the model has been confirmed using brushite cement scaffolds seeded with osteoblasts (bone) and fibrin hydrogel scaffolds seeded with fibroblasts (tendon) in individual studies with cells from either human or rat origin. This novel approach allows a bespoke anatomical design for enthesis repair and should be applied to future studies in this area.

18.
Toxicol Appl Pharmacol ; 484: 116868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382712

RESUMO

Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.


Assuntos
Benzofenonas , Estradiol , Gravidez , Humanos , Camundongos , Feminino , Animais , Benzofenonas/toxicidade , Estradiol/metabolismo , Morfogênese , RNA Mensageiro/metabolismo , Glândulas Mamárias Animais
19.
Pharmacol Res ; 200: 107046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159783

RESUMO

In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Europa (Continente) , Previsões , Bases de Dados Factuais
20.
Mol Biol Rep ; 51(1): 781, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913199

RESUMO

Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation. The differentiation process, generally carried out in 2D culture systems, were relied on growth factors induction. Therefore, an artificial extracellular matrix with relevant mechanical properties is essential to build 3D culture models. Various 3D fabrication techniques, such as hydrogel-based and fibrous scaffolds, scaffold-free, and co-culture to endothelial cells were reviewed and summarized to gain insights. The obtained MSCs-derived ECs are shown by the expression of endothelial gene markers and tubule-like structure. In order to mimicking relevant vascular tissue, 3D-bioprinting facilitates to form more complex microstructures. In addition, a microfluidic chip with adequate flow rate allows medium perfusion, providing mechanical cues like shear stress to the artificial vascular vessels.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Matriz Extracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA