Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215695

RESUMO

Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.


Assuntos
Metabolismo Energético , Haptófitas/metabolismo , Plâncton/citologia , Simbiose , Ciclo do Carbono , Divisão Celular , Núcleo Celular/metabolismo , Microalgas/citologia , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo
2.
Platelets ; 34(1): 2264978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933490

RESUMO

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , RNA Viral , SARS-CoV-2 , Plaquetas/ultraestrutura , Organelas
3.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L873-L881, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438000

RESUMO

Weibel's hypothetical three-dimensional (3-D) model in 1966 provided first ultrastructural details into tubular myelin (TM), a unique, complex surfactant subtype found in the hypophase of the alveolar lining layer. Although initial descriptions by electron microscopy (EM) were already published in the 1950s, a uniform morphological differentiation from other intra-alveolar surfactant subtypes is still missing and potential structure-function relationships remain enigmatic. Technical developments in volume EM methods now allow a more detailed reinvestigation, to address unanswered ultrastructural questions, we analyzed ultrathin sections of humanized SP-A1/SP-A2 coexpressing mouse and human lung samples by conventional transmission EM. We combined these two-dimensional (2-D) information with 3-D analysis of single- and dual-axis electron tomography of serial sections for high z-resolution (in a range of a few nanometers) and extended volumes of up to 1 µm total z-information, this study reveals that TM constitutes a heterogeneous surfactant organization mainly comprised of distorted parallel membrane planes with local intersections, which are distributed all over the TM substructure. These intersecting membrane planes form, among other various polygons, the well-known 2-D "lattice", respectively 3-D quadratic tubules, which in many analyzed spots of human alveoli appear to be less abundant than also observed nonconcentric 3-D lamellae, the additional application of serial section electron tomography to conventional transmission EM demonstrates a high heterogeneity of TM membrane networks, which indicates dynamic transformations between its substructures. Our method provides an ideal basis for further in and ex vivo structural analyses of surfactant under various conditions at nanometer scale.


Assuntos
Tomografia com Microscopia Eletrônica , Surfactantes Pulmonares , Animais , Humanos , Pulmão/ultraestrutura , Camundongos , Bainha de Mielina , Tensoativos
4.
J Neurosci ; 40(13): 2663-2679, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32054677

RESUMO

Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1. Moreover, using single-axon transfection labeling, we demonstrate that the above differences actually occur on the MC versus the S1 branches of individual Po cell axons that innervate both areas. Along with recently-discovered divergences in efficacy and plasticity, the synaptic structure differences reported here thus reveal a new subcellular level of complexity. This is a finding that upends current models of thalamocortical circuitry, and that might as well illuminate the functional logic of other branched projection axon systems.SIGNIFICANCE STATEMENT Many long-distance brain connections depend on neurons whose branched axons target separate regions. Using 3D electron microscopy and single-cell transfection, we investigated the mouse Posterior thalamic nucleus (Po) cell axons that simultaneously innervate motor and sensory areas of the cerebral cortex involved in whisker movement control. We demonstrate significant differences in the size of the boutons made in each area by individual Po axons, as well as in functionally-relevant parameters in the composition of their synapses. In addition, we found similarly large differences between the synapses of Po versus ventral posteromedial thalamic nucleus axons in the whisker sensory cortex. Area-specific synapse structure in individual axons implies a new, unsuspected level of complexity in long-distance brain connections.


Assuntos
Axônios/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Vibrissas/fisiologia
5.
Neuroimage ; 225: 117529, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147507

RESUMO

Validation and interpretation of diffusion magnetic resonance imaging (dMRI) requires detailed understanding of the actual microstructure restricting the diffusion of water molecules. In this study, we used serial block-face scanning electron microscopy (SBEM), a three-dimensional electron microscopy (3D-EM) technique, to image seven white and grey matter volumes in the rat brain. SBEM shows excellent contrast of cellular membranes, which are the major components restricting the diffusion of water in tissue. Additionally, we performed 3D structure tensor (3D-ST) analysis on the SBEM volumes and parameterised the resulting orientation distributions using Watson and angular central Gaussian (ACG) probability distributions as well as spherical harmonic (SH) decomposition. We analysed how these parameterisations described the underlying orientation distributions and compared their orientation and dispersion with corresponding parameters from two dMRI methods, neurite orientation dispersion and density imaging (NODDI) and constrained spherical deconvolution (CSD). Watson and ACG parameterisations and SH decomposition captured well the 3D-ST orientation distributions, but ACG and SH better represented the distributions due to its ability to model asymmetric dispersion. The dMRI parameters corresponded well with the 3D-ST parameters in the white matter volumes, but the correspondence was less evident in the more complex grey matter. SBEM imaging and 3D-ST analysis also revealed that the orientation distributions were often not axially symmetric, a property neatly captured by the ACG distribution. Overall, the ability of SBEM to image diffusion barriers in intricate detail, combined with 3D-ST analysis and parameterisation, provides a step forward toward interpreting and validating the dMRI signals in complex brain tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Tensor de Difusão , Imageamento Tridimensional , Microscopia Eletrônica , Animais , Imagem de Difusão por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/ultraestrutura , Ratos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura
6.
Exp Eye Res ; 205: 108488, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571532

RESUMO

Increased intraocular pressure (IOP) is the main risk factor for primary open-angle glaucoma and results from impaired drainage of aqueous humor (AH) through the trabecular outflow pathway. AH must pass the inner wall (IW) endothelium of Schlemm's canal (SC), which is a monolayer held together by tight junctions, to exit the eye. One route across the IW is through giant vacuoles (GVs) with their basal openings and intracellular pores (I-pores). AH drainage through the trabecular outflow pathway is segmental. Whether more GVs with both basal openings and I-pores are present in the active flow areas and factors that may influence formation of GVs with I-pores have not been fully elucidated due to limitations in imaging methods. In this study, we applied a relatively new technique, serial block-face scanning electron microscopy (SBF-SEM), to investigate morphological factors associated with GVs with I-pores in different flow areas. Two normal human donor eyes were perfused at 15 mmHg with fluorescent tracers to label the outflow pattern followed by perfusion-fixation. Six radial wedges of trabecular meshwork including SC (2 each from high-, low-, and non-flow areas) were imaged using SBF-SEM (total: 9802 images). Total GVs, I-pores, basal openings, and four types of GVs were identified. Percentages of GVs with I-pores and basal openings and number of I-pores/GV were determined. Overall, 14.4% (477/3302) of GVs had I-pores. Overall percentage of GVs with both I-pores and basal openings was higher in high- (15.7%), than low- (12.6%) or non-flow (7.3%) areas. Of GVs with I-pores, 83.2% had a single I-pore; 16.8% had multiple I-pores (range: 2-6). Additionally, 180 GVs (90 with I-pores and 90 without I-pores) were randomly selected, manually segmented, and three-dimensionally (3D) reconstructed to determine size, shape, and thickness of the cellular lining. Size of GVs (including median volume, surface area, and maximal cross-sectional area) with I-pores (n = 90) was significantly larger than GVs without I-pores (n = 90) using 3D-reconstructed GVs (P ≤ 0.01). Most I-pores (73.3%; 66/90) were located on or close to GV's maximal cross-sectional area with significant thinning of the cellular lining. Our results suggest that larger size and thinner cellular lining of GVs may contribute to formation of GVs with I-pores. More GVs with I-pores and basal openings were observed in high-flow areas, suggesting these GVs do provide a channel through which AH passes into SC and that increasing this type of GV may be a potential strategy to increase aqueous outflow for glaucoma treatment.


Assuntos
Células Endoteliais/ultraestrutura , Canais Iônicos/ultraestrutura , Limbo da Córnea/ultraestrutura , Malha Trabecular/ultraestrutura , Vacúolos/ultraestrutura , Adulto , Idoso de 80 Anos ou mais , Tecido Conjuntivo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Doadores de Tecidos
7.
Cereb Cortex ; 30(3): 1887-1901, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31665237

RESUMO

Multivesicular bodies (MVBs) are membrane-bound organelles that belong to the endosomal pathway. They participate in the transport, sorting, storage, recycling, degradation, and release of multiple substances. They interchange cargo with other organelles and participate in their renovation and degradation. We have used focused ion beam milling and scanning electron microscopy (FIB-SEM) to obtain stacks of serial sections from the neuropil of the somatosensory cortex of the juvenile rat. Using dedicated software, we have 3D-reconstructed 1618 MVBs. The mean density of MVBs was 0.21 per cubic micron. They were unequally distributed between dendrites (39.14%), axons (18.16%), and nonsynaptic cell processes (42.70%). About one out of five MVBs (18.16%) were docked on mitochondria, representing the process by which the endosomal pathway participates in mitochondrial maintenance. Other features of MVBs, such as the presence of tubular protrusions (6.66%) or clathrin coats (19.74%) can also be interpreted in functional terms, since both are typical of early endosomes. The sizes of MVBs follow a lognormal distribution, with differences across cortical layers and cellular compartments. The mean volume of dendritic MVBs is more than twice as large as the volume of axonic MVBs. In layer I, they are smaller, on average, than in the other layers.


Assuntos
Corpos Multivesiculares/metabolismo , Transporte Proteico/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/metabolismo , Animais , Axônios/metabolismo , Microscopia Eletrônica/métodos , Neurópilo/metabolismo , Ratos , Córtex Somatossensorial/metabolismo
8.
Cereb Cortex ; 30(4): 2114-2127, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31807747

RESUMO

Long-term memory formation (LTM) is a process accompanied by energy-demanding structural changes at synapses and increased spine density. Concomitant increases in both spine volume and postsynaptic density (PSD) surface area have been suggested but never quantified in vivo by clear-cut experimental evidence. Using novel object recognition in mice as a learning task followed by 3D electron microscopy analysis, we demonstrate that LTM induced all aforementioned synaptic changes, together with an increase in the size of astrocytic glycogen granules, which are a source of lactate for neurons. The selective inhibition of glycogen metabolism in astrocytes impaired learning, affecting all the related synaptic changes. Intrahippocampal administration of l-lactate rescued the behavioral phenotype, along with spine density within 24 hours. Spine dynamics in hippocampal organotypic slices undergoing theta burst-induced long-term potentiation was similarly affected by inhibition of glycogen metabolism and rescued by l-lactate. These results suggest that learning primes astrocytic energy stores and signaling to sustain synaptic plasticity via l-lactate.


Assuntos
Astrócitos/ultraestrutura , Glicogênio , Ácido Láctico/administração & dosagem , Aprendizagem/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glicogênio/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Aprendizagem/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Sinapses/efeitos dos fármacos
9.
Cereb Cortex ; 29(7): 2771-2781, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30113619

RESUMO

The location of GABAergic synapses on dendrites is likely key for neuronal integration. In particular, inhibitory inputs on dendritic spines could serve to selectively veto or modulate individual excitatory inputs, greatly expanding the computational power of individual neurons. To investigate this, we have undertaken a combined functional, molecular, and ultrastructural mapping of the location of GABAergic inputs onto dendrites of pyramidal neurons from upper layers of juvenile mouse somatosensory cortex. Using two-photon uncaging of GABA, intracellular labeling with gerphyrin intrabodies, and focused ion beam milling with scanning electron microscopy, we find that most (96-98%) spines lack GABAergic synapses, although they still display GABAergic responses, potentially due to extrasynaptic GABA receptors. We conclude that GABAergic inputs, in practice, contact dendritic shafts and likely control clusters of excitatory inputs, defining functional zones on dendrites.


Assuntos
Espinhas Dendríticas/ultraestrutura , Neurônios GABAérgicos/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Sinapses/ultraestrutura , Animais , Espinhas Dendríticas/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia
10.
J Am Soc Nephrol ; 30(1): 96-108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514724

RESUMO

BACKGROUND: Foot process effacement is one of the pathologic indicators of podocyte injury. However, the morphologic changes associated with it remain unclear. METHODS: To clarify the developmental process, we analyzed puromycin nephrotic podocytes reconstructed from serial focused-ion beam/scanning electron microscopy (FIB/SEM) images. RESULTS: Intact podocytes consisted of four subcellular compartments: cell body, primary process, ridge-like prominence (RLP), and foot process. The RLP, a longitudinal protrusion from the basal surface of the cell body and primary process, served as an adhesive apparatus for the cell body and primary process to attach to the glomerular basement membrane. Foot processes protruded from both sides of the RLP. In puromycin nephrotic podocytes, foot process effacement occurred in two ways: by type-1 retraction, where the foot processes retracted while maintaining their rounded tips; or type-2 retraction, where they narrowed across their entire lengths, tapering toward the tips. Puromycin nephrotic podocytes also exhibited several alterations associated with foot process effacement, such as deformation of the cell body, retraction of RLPs, and cytoplasmic fragmentation. Finally, podocytes were reorganized into a broad, flattened shape. CONCLUSIONS: The three-dimensional reconstruction of podocytes by serial FIB/SEM images revealed the morphologic changes involved in foot process effacement in greater detail than previously described.


Assuntos
Membrana Basal Glomerular/patologia , Imageamento Tridimensional , Nefrose/patologia , Podócitos/patologia , Puromicina Aminonucleosídeo/farmacologia , Tomografia Computadorizada por Raios X/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Injeções Intraperitoneais , Masculino , Microscopia Eletrônica de Varredura/métodos , Nefrose/induzido quimicamente , Podócitos/citologia , Podócitos/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Valores de Referência
11.
J Struct Biol ; 207(1): 1-11, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30914296

RESUMO

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) is an imaging approach that enables analysis of the 3D architecture of cells and tissues at resolutions that are 1-2 orders of magnitude higher than that possible with light microscopy. The slow speeds of data collection and manual segmentation are two critical problems that limit the more extensive use of FIB-SEM technology. Here, we present an easily accessible robust method that enables rapid, large-scale acquisition of data from tissue specimens, combined with an approach for semi-automated data segmentation using the open-source machine learning Weka segmentation software, which dramatically increases the speed of image analysis. We demonstrate the feasibility of these methods through the 3D analysis of human muscle tissue by showing that our process results in an improvement in speed of up to three orders of magnitude as compared to manual approaches for data segmentation. All programs and scripts we use are open source and are immediately available for use by others.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Músculo Esquelético/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Software , Fatores de Tempo
12.
J Cell Sci ; 130(1): 260-268, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27026525

RESUMO

Positive-strand RNA viruses, which can be devastating pathogens in humans, animals and plants, replicate their genomes on intracellular membranes. Here, we describe the three-dimensional ultrastructural organization of a tombusvirus replicase in yeast, a valuable model for exploring virus-host interactions. We visualized the intracellular distribution of a viral replicase protein using metal-tagging transmission electron microscopy, a highly sensitive nanotechnology whose full potential remains to be developed. These three-dimensional images show how viral replicase molecules are organized when they are incorporated into the active domains of the intracellular replication compartment. Our approach provides a means to study protein activation mechanisms in cells and to identify targets for new antiviral compounds.


Assuntos
Imageamento Tridimensional , Espaço Intracelular/virologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Tombusvirus/fisiologia , Montagem de Vírus , Anticorpos/metabolismo , Metalotioneína/metabolismo , Modelos Biológicos , RNA de Cadeia Dupla/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/virologia , Tombusvirus/ultraestrutura , Tomografia , Replicação Viral
13.
J Cell Sci ; 128(14): 2529-40, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26045447

RESUMO

The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types.


Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Imageamento Tridimensional , Vesículas Sinápticas/ultraestrutura , Animais , Cobaias , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Microscopia Eletrônica , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
14.
Histochem Cell Biol ; 148(1): 3-12, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283744

RESUMO

Due to the physical and physiological properties of the blood-brain barrier (BBB), the transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. We previously conducted a series of experiments to explore the potential of the anti-transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 antibody and administered intravenously to mice. Transmission electron microscopy was used and a two-dimensional (2D) image analysis was performed to detect the AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the present work, we determined that serial block-face scanning electron microscopy (SBF-SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three dimensions and we, therefore, applied it to gain more knowledge of their transcellular trafficking. The resulting 3D reconstructions provided additional information on the endocytic vesicles containing AuNPs and the endosomal processing that occurs inside BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger and more complex than described in our 2D study. We also discuss tradeoffs of using this technique for our application, and conclude that together with other volume electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth of considering for studies of drug transport across the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Ouro/farmacocinética , Nanopartículas Metálicas/análise , Microscopia Eletrônica de Varredura , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/farmacocinética , Ouro/administração & dosagem , Injeções Intravenosas , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR
15.
Cereb Cortex ; 26(11): 4282-4298, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27624722

RESUMO

Significance Statement: The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders.


Assuntos
Encéfalo/citologia , Moléculas de Adesão Celular Neuronais/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Serina Endopeptidases/metabolismo , Sinapses/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Diferenciação Celular , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais/fisiologia , Sinapses/ultraestrutura , Transdução Genética
16.
Acta Neuropathol Commun ; 12(1): 88, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840253

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Imageamento Tridimensional , Mitocôndrias , Animais , Doença de Huntington/patologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Imageamento Tridimensional/métodos , Camundongos , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Microscopia Eletrônica/métodos , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , Neurônios/metabolismo
17.
Front Neuroanat ; 18: 1348032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645671

RESUMO

The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.

18.
Front Cell Neurosci ; 17: 1229731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671169

RESUMO

Introduction: We previously discovered a pyridazine derivative compound series that can improve cognitive functions in mouse models of Alzheimer's disease. One of the advanced compounds from this series, LDN/OSU-0215111-M3, was selected as the preclinical development candidate. This compound activates local protein translation at the perisynaptic astrocytic process (PAP) and enhances synaptic plasticity sequentially. While biochemical evidence supports the hypothesis that the compound enhances the structural plasticity of the tripartite synapse, its direct structural impact has not been investigated. Methods: Volume electron microscopy was used to study the hippocampal tripartite synapse three-dimensional structure in 3-month-old wild-type FVB/NJ mice after LDN/OSU-0215111-M3 treatment. Results: LDN/OSU-0215111-M3 increased the size of tertiary apical dendrites, the volume of mushroom spines, the proportion of mushroom spines containing spine apparatus, and alterations in the spine distribution across the surface area of tertiary dendrites. Compound also increased the number of the PAP interacting with the mushroom spines as well as the size of the PAP in contact with the spines. Furthermore, proteomic analysis of the isolated synaptic terminals indicated an increase in dendritic and synaptic proteins as well as suggested a possible involvement of the phospholipase D signaling pathway. To further validate that LDN/OSU-0215111-M3 altered synaptic function, electrophysiological studies showed increased long-term potentiation following compound treatment. Discussion: This study provides direct evidence that pyridazine derivatives enhance the structural and functional plasticity of the tripartite synapse.

19.
Front Cell Dev Biol ; 10: 867376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493087

RESUMO

Glaucoma is associated with increased resistance in the conventional aqueous humor (AH) outflow pathway of the eye. The majority of resistance is thought to reside in the juxtacanalicular connective tissue (JCT) region of the trabecular meshwork and is modulated by the inner wall (IW) endothelial cells of Schlemm's canal (SC). The IW cells form connections with the underlying JCT cells/matrix, and these connections are thought to modulate outflow resistance. Two ways by which AH crosses the IW endothelium are through: 1) the formation of outpouchings in IW cells called giant vacuoles (GVs) and their intracellular pores (I-pores), and 2) intercellular pores between two adjacent IW cells (B-pores). AH outflow is segmental with areas of high-, low-, and non-flow around the circumference of the eye. To investigate whether changes in cellular connectivity play a role in segmental outflow regulation, we used global imaging, serial block-face scanning electron microscopy (SBF-SEM), and 3D reconstruction to examine individual IW cells from different flow areas of ex vivo perfused normal human donor eyes. Specifically, we investigated the differences in cellular dimensions, connections with JCT cells/matrix, GVs, and pores in SC IW cells between high-, low-, and non-flow areas. Our data showed that: 1) IW cell-JCT cell/matrix connectivity was significantly decreased in the cells in high-flow areas compared to those in low- and non-flow areas; 2) GVs in the cells of high-flow areas had significantly fewer connections beneath them compared to GVs in the cells of low- and non-flow areas; 3) Type IV GVs (with I-pores and basal openings) had significantly fewer connections beneath them compared to Type I GVs (no I-pore or basal opening). Our results suggest that a decreased number of cellular connections between the IW and JCT in high-flow areas is associated with increased numbers of GVs with I-pores and larger Type IV GVs observed in previous studies. Therefore, modulating the number of cellular connections may affect the amount of high-flow area around the eye and thereby modulate AH outflow.

20.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215794

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Animais , Linhagem Celular , Chlorocebus aethiops , SARS-CoV-2/química , Células Vero , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA