Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Semin Cell Dev Biol ; 129: 63-74, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577698

RESUMO

Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.


Assuntos
Actinas , Desenvolvimento Embrionário , Actinas/metabolismo , Animais , Movimento Celular , Extensões da Superfície Celular/metabolismo , Endoderma , Feminino , Gastrulação , Humanos , Mesoderma , Camundongos , Gravidez
2.
Exp Cell Res ; 401(2): 112527, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675807

RESUMO

Metastasis is the leading cause of mortality in cancer patients. To migrate to distant sites, cancer cells would need to adapt their behaviour in response to different tissue environments. Thus, it is essential to study this process in models that can closely replicate the tumour microenvironment. Here, we evaluate the use of organotypic liver and brain slices to study cancer metastasis. Morphological and viability parameters of the slices were monitored daily over 3 days in culture to assess their stability as a realistic 3D tissue platform for in vitro metastatic assays. Using these slices, we evaluated the invasion of MDA-MB-231 breast cancer cells and of a subpopulation that was selected for increased motility. We show that the more aggressive invasion of the selected cells likely resulted not only from their lower stiffness, but also from their lower adhesion to the surrounding tissue. Different invasion patterns in the brain and liver slices were observed for both subpopulations. Cells migrated faster in the brain slices (with an amoeboid-like mode) compared to in the liver slices (where they migrated with mesenchymal or collective migration-like modes). Inhibition of the Ras/MAPK/ERK pathway increased cell stiffness and adhesion forces, which resulted in reduced invasiveness. These results illustrate the potential for organotypic tissue slices to more closely mimic in vivo conditions during cancer cell metastasis than most in vitro models.


Assuntos
Neoplasias da Mama/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Encéfalo/patologia , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/patologia , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas ras/genética
3.
Cell Tissue Bank ; 20(3): 351-365, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31218457

RESUMO

The extracellular matrix (ECM) is a dynamic and intricate three-dimensional (3D) microenvironment with excellent biophysical, biomechanical, and biochemical properties that may directly or indirectly regulate cell behavior, including proliferation, adhesion, migration, and differentiation. Compared with tissue-derived ECM, cell-derived ECM potentially has more advantages, including less potential for pathogen transfer, fewer inflammatory or anti-host immune responses, and a closer resemblance to the native ECM microenvironment. Different types of cell-derived ECM, such as adipose stem cells, synovium-derived stem cells and bone marrow stromal cells, their effects on articular chondrocytes which have been researched. In this study, we aimed to develop a 3D cell culture substrate using decellularized ECM derived from human umbilical cord-derived mesenchymal stem cells (hUCMSCs), and evaluated the effects on articular chondrocytes. We evaluated the morphology and components of hUCMSC-derived ECM using physical and chemical methods. Morphological, histological, immunohistochemical, biochemical, and real-time PCR analyses demonstrated that proliferation and differentiation capacity of chondrocytes using the 3D hUCMSC-derived ECM culture substrate was superior to that using non-coated two-dimensional plastic culture plates. In conclusion, 3D decellularized ECM derived from hUCMSCs offers a tissue-specific microenvironment for in vitro culture of chondrocytes, which not only markedly promoted chondrocyte proliferation but also preserved the differentiation capacity of chondrocytes. Therefore, our findings suggest that a 3D cell-derived ECM microenvironment represents a promising prospect for autologous chondrocyte-based cartilage tissue engineering and regeneration. The hUCMSC-derived ECM as a biomaterial is used for the preparation of scaffold or hybrid scaffold products which need to further study in the future.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/metabolismo , Cartilagem Articular/citologia , Adesão Celular , Técnicas de Cultura de Células , Movimento Celular , Condrócitos/metabolismo , Condrogênese , Fibronectinas/química , Humanos , Inflamação , Coelhos , Engenharia Tecidual/instrumentação , Alicerces Teciduais
4.
Adv Funct Mater ; 26(16): 2617-2628, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27346992

RESUMO

Biological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology. High-density regions formed via a fluid pore pressure and flow-driven mechanism, with increased relative fibril density (10×), mechanical properties (20×, to 94.40±18.74kPa), and maximum fibril thickness (1.9×, to >1µm) compared to low-density regions, while maintaining porosity and fluid/mass transport to support viability of encapsulated cells. Similar to the organization of the articular cartilage zonal structure, we found that high-density collagen regions induced cell and nuclear alignment of primary chondrocytes. Chondrocyte gene expression was maintained in collagen matrices, and no phenotypic changes were observed as a result of densification. Densification of collagen matrices provides a unique, tunable platform for the creation of gradient systems to study complex cell-matrix interactions. These methods are easily generalized to compression and boundary condition modalities useful to mimic a broad range of tissues.

5.
Adv Funct Mater ; 26(30): 5427-5436, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28824356

RESUMO

Decellularized cartilage microparticles, and all associated native signals, are delivered to hMSC populations in a dense, type I collagen matrix. Hybrid usage of native tissue signals and the engineering control of collagen matrices show the ability to induce local infiltration and differentiation of hMSCs. Additionally, the solid cartilage microparticles inhibit bulk cell-mediated contraction of the composite.

6.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005477

RESUMO

Cellular biomechanics plays critical roles in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells' behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, we utilize optical Brillouin microscopy to longitudinally acquire mechanical images of growing cancerous spheroids over the period of eight days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, we demonstrate that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, we have developed a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images, suggesting the mechanical features of cancer cells could potentially serve as a new biomarker in cancer classification and detection.

7.
Biomaterials ; 306: 122473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335719

RESUMO

Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais , Humanos , Ligantes , Colágeno/química , Matriz Extracelular , Hidrogéis/química
8.
Biochim Biophys Acta Gen Subj ; 1867(6): 130361, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019341

RESUMO

Breast cancer is the most common ailment among women. In 2020, it had the highest incidence of any type of cancer. Many Phase II and III anti-cancer drugs fail due to efficacy, durability, and side effects. Thus, accelerated drug screening models must be accurate. In-vivo models have been used for a long time, but delays, inconsistent results, and a greater sense of responsibility among scientists toward wildlife have led to the search for in-vitro alternatives. Stromal components support breast cancer growth and survival. Multi-compartment Transwell models may be handy instruments. Co-culturing breast cancer cells with endothelium and fibroblasts improves modelling. The extracellular matrix (ECM) supports native 3D hydrogels in natural and polymeric forms. 3D Transwell cultured tumor spheroids mimicked in-vivo pathological conditions. Tumor invasion, migration, Trans-endothelial migration, angiogenesis, and spread are studied using comprehensive models. Transwell models can create a cancer niche and conduct high-throughput drug screening, promising future applications. Our comprehensive shows how 3D in-vitro multi compartmental models may be useful in producing breast cancer stroma in Transwell culture.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Modelos Epidemiológicos , Técnicas de Cocultura , Matriz Extracelular
9.
ACS Appl Mater Interfaces ; 15(29): 34397-34406, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458389

RESUMO

The self-organization of embryonic stem cells (ESCs) into organized tissues with three distinct germ layers is critical to morphogenesis and early development. While the regulation of this self-organization by soluble signals is well established, the involvement of mechanical force gradients in this process remains unclear due to the lack of a suitable platform to study this process. In this study, we developed a 3D microenvironment to examine the influence of mechanical tension gradients on ESC-patterned differentiation during morphogenesis by controlling the geometrical signals (shape and size) of ESC colonies. We found that changes in colony geometry impacted the germ layer pattern, with Cdx2-positive cells being more abundant at edges and in areas with high curvatures. The differentiation patterns were determined by geometry-mediated cell tension gradients, with an extraembryonic mesoderm-like layer forming in high-tension regions and ectodermal-like lineages at low-tension regions in the center. Suppression of cytoskeletal tension hindered ESC self-organization. These results indicate that geometric confinement-mediated mechanical tension plays a crucial role in linking multicellular organization to cell differentiation and impacting tissue patterning.


Assuntos
Técnicas de Cultura de Células , Camadas Germinativas , Animais , Camundongos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas , Células-Tronco Embrionárias
10.
Stem Cells Transl Med ; 11(2): 213-229, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35259280

RESUMO

Cells of the stromal vascular fraction (SVF) of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, cultured adipose-derived stromal cells (ASCs), even after minimal monolayer expansion, lose osteogenic capacity in vivo. Communication between endothelial and stromal/mesenchymal cell lineages has been suggested to improve bone formation and vascularization by engineered tissues. Here, we investigated the specific role of a subpopulation of SVF cells positive for T-cadherin (T-cad), a putative endothelial marker. We found that maintenance during monolayer expansion of a T-cad-positive cell population, composed of endothelial lineage cells (ECs), is mandatory to preserve the osteogenic capacity of SVF cells in vivo and strongly supports their vasculogenic properties. Depletion of T-cad-positive cells from the SVF totally impaired bone formation in vivo and strongly reduced vascularization by SVF cells in association with decreased VEGF and Adiponectin expression. The osteogenic potential of T-cad-depleted SVF cells was fully rescued by co-culture with ECs from a human umbilical vein (HUVECs), constitutively expressing T-cad. Ectopic expression of T-cad in ASCs stimulated mineralization in vitro but failed to rescue osteogenic potential in vivo, indicating that the endothelial nature of the T-cad-positive cells is the key factor for induction of osteogenesis in engineered grafts based on SVF cells. This study demonstrates that crosstalk between stromal and T-cad expressing endothelial cells within adipose tissue critically regulates osteogenesis, with VEGF and adiponectin as associated molecular mediators.


Assuntos
Células Endoteliais , Osteogênese , Adiponectina/metabolismo , Tecido Adiposo , Caderinas , Diferenciação Celular , Células Cultivadas , Humanos , Células Estromais/metabolismo , Fração Vascular Estromal , Linfócitos T , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Methods Mol Biol ; 2179: 227-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939724

RESUMO

Cells live in a highly curved and folded 3D microenvironment within the human body. Since epithelial cells in internal organs usually adopt a tubular shape, there is a need to engineer simple in vitro devices to promote this cellular configuration. The aim of these devices would be to investigate epithelial morphogenesis and cell behavior-leading to the development of more sophisticated platforms for tissue engineering and regenerative medicine. In this chapter, we first explain the need for such epithelial tubular micropatterns based on anatomical considerations and then survey methods that can be used to study different aspects of epithelial tubulogenesis. The methods examined can broadly be divided into two classes: conventional 2D microfabrication for the formation of simple epithelial tubes in substrates of different stiffness; and 3D approaches to enable the self-assembly of organoid-derived epithelial tubes in a tubular configuration. These methods demonstrate that modeling tubulogenesis in vitro with high resolution, accuracy, and reproducibility is possible.


Assuntos
Diferenciação Celular , Engenharia Tecidual/métodos , Animais , Polaridade Celular , Forma Celular , Cães , Células Madin Darby de Rim Canino , Alicerces Teciduais/química
12.
Dev Cell ; 56(6): 826-841.e4, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33705692

RESUMO

We describe a cellular contractile mechanism employed by fibroblasts and mesenchymal cancer cells to migrate in 3D collagen gels. During 3D spreading, fibroblasts strongly deform the matrix. They protrude, polarize, and initiate migration in the direction of highest extracellular matrix (ECM) deformation (prestrain). This prestrain is maintained through anterior cellular contractions behind the leading edge prior to protrusion, coordinating a distinct 3D migration cycle that varies between cell types. Myosin IIA is required for strain polarization, generating anterior contractions, and maintaining prestrain for efficient directional cell migration. Local matrix severing disrupts the matrix prestrain, suppressing directional protrusion. We show that epithelial cancer and endothelial cells rarely demonstrate the sustained prestrain or anterior contractions. We propose that mesenchymal cells sense ECM stiffness in 3D and generate their own matrix prestrain. This requires myosin IIA to generate polarized periodic anterior contractions for maintaining a 3D migration cycle.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Mesoderma/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Estresse Mecânico , Neoplasias da Mama/metabolismo , Adesão Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Humanos , Mesoderma/citologia
13.
In Vitro Cell Dev Biol Anim ; 56(6): 435-443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32572848

RESUMO

In vivo, melanocytes occupy three-dimensional (3D) space. Nevertheless, most experiments involving melanocytes are performed in a two-dimensional microenvironment, resulting in difficulty obtaining accurate results. Therefore, it is necessary to construct an artificial in vivo-like 3D microenvironment. Here, as a step towards engineering a precisely defined acellular 3D microenvironment supporting the maintenance of human epidermal melanocytes (HEMs), we examined the types of integrin heterodimers that are expressed transcriptionally, translationally, and functionally in HEMs. Real-time PCR and fluorescent immunoassay analyses were used to elucidate the expression of integrin α and ß subunit genes at the transcriptional and translational levels, respectively. The functionality of the presumed integrin heterodimers was confirmed using attachment and antibody-inhibition assays. Among the genes encoding 12 integrin subunits (α1, α2, α3, α4, α5, α6, α7, αV, ß1, ß3, ß5, and ß8) showing significantly higher transcription levels, proteins translated from the integrin α2, α4, α5, ß1, ß3, and ß5 subunit genes were detected on the surface of HEMs. These HEMs showed significantly increased adhesion to collagen I, fibronectin, laminin, and vitronectin, and functional blockade of the integrin α2 subunits significantly inhibited adhesion to collagen I, fibronectin, and laminin. In addition, there was no significant inhibition of the adhesion to fibronectin or vitronectin in HEMs with functional blockade of the integrin α4, α5, or αV subunits. These results indicate that the active integrin α2ß1 heterodimer and the inactive integrin α4, α5, αV, ß3, and ß5 subunits are all localized on the surface of HEMs.


Assuntos
Membrana Celular/metabolismo , Células Epidérmicas/citologia , Integrinas/metabolismo , Melanócitos/citologia , Humanos , Recém-Nascido , Integrinas/genética , Melanócitos/metabolismo , Biossíntese de Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica
14.
Bioprinting ; 182020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32099931

RESUMO

Despite the recent rigorous studies towards a possible cure, cancer still remains as one of the most daunting problems faced by the humanity. Currently utilized two-dimensional cancer models are known to have various insuperable limitations such as insufficient biomimicry of the heterogeneous conditions of tumors and their three-dimensional structures. Discrepancies between the laboratory models and the actual tumor environment significantly impair a thorough comprehension of the carcinogenesis process and development of successful remedies against cancer. Modeling tumor microenvironments through bioprinting poses strong potential to minimize the effects of the aforementioned issues thanks to its freeform nature, adaptability, customizability, scalability and diversity. Numerous research studies involving three-dimensional modeling of various cancer types using bioprinting technologies have been reported, recently. In this review, we provide a broad summary of these studies to help better represent their potential and analyze their contribution to cancer research.

15.
Biomaterials ; 236: 119802, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014804

RESUMO

The poor healing capacity of tendons is known to worsen in the elderly. During tendon aging and degeneration, endogenous human tendon stem/progenitor cells (hTSPCs) experience profound pathological changes. Here, we explored a rejuvenation strategy for hTSPCs derived from aged/degenerated Achilles tendons (A-TSPCs) by providing three-dimensional (3D) nanofiber hydrogels and comparing them to young/healthy TSPCs (Y-TSPCs). RADA peptide hydrogel has a self-assembling ability, forms a nanofibrous 3D niche and can be further functionalized by adding RGD motifs. Cell survival, apoptosis, and proliferation assays demonstrated that RADA and RADA/RGD hydrogels support A-TSPCs in a comparable manner to Y-TSPCs. Moreover, they rejuvenated A-TSPCs to a phenotype similar to that of Y-TSPCs, as evidenced by restored cell morphology and cytoskeletal architecture. Transmission electron, confocal laser scanning and atomic force microscopies demonstrated comparable ultrastructure, surface roughness and elastic modulus of A- and Y-TSPC-loaded hydrogels. Lastly, quantitative PCR revealed similar expression profiles, as well a significant upregulation of genes related to tenogenesis and multipotency. Taken together, the RADA-based hydrogels exert a rejuvenating effect by recapitulating in vitro specific features of the natural microenvironment of human TSPCs, which strongly indicates their potential to direct cell behaviour and overcome the challenge of cell aging and degeneration in tendon repair.


Assuntos
Nanofibras , Idoso , Diferenciação Celular , Sobrevivência Celular , Senescência Celular , Humanos , Células-Tronco
16.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443833

RESUMO

We developed a (three-dimensional) 3D scaffold, we named HY-FIB, incorporating a force-transmission band of braided hyaluronate embedded in a cell localizing fibrin hydrogel and poly-lactic-co-glycolic acid (PLGA) nanocarriers as transient components for growth factor controlled delivery. The tenogenic supporting capacity of HY-FIB on human-Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) was explored under static conditions and under bioreactor-induced cyclic strain conditions. HY-FIB elasticity enabled to deliver a mean shear stress of 0.09 Pa for 4 h/day. Tendon and cytokine marker expression by hBM-MSCs were studied. Results: hBM-MSCs embedded in HY-FIB and subjected to mechanical stimulation, resulted in a typical tenogenic phenotype, as indicated by type 1 Collagen fiber immunofluorescence. RT-qPCR showed an increase of type 1 Collagen, scleraxis, and decorin gene expression (3-fold, 1600-fold, and 3-fold, respectively, at day 11) in dynamic conditions. Cells also showed pro-inflammatory (IL-6, TNF, IL-12A, IL-1ß) and anti-inflammatory (IL-10, TGF-ß1) cytokine gene expressions, with a significant increase of anti-inflammatory cytokines in dynamic conditions (IL-10 and TGF-ß1 300-fold and 4-fold, respectively, at day 11). Mechanical signaling, conveyed by HY-FIB to hBM-MSCs, promoted tenogenic gene markers expression and a pro-repair cytokine balance. The results provide strong evidence in support of the HY-FIB system and its interaction with cells and its potential for use as a predictive in vitro model.


Assuntos
Biomarcadores/metabolismo , Citocinas/metabolismo , Fibrina/química , Ácido Hialurônico/química , Células-Tronco Mesenquimais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tendões/metabolismo , Alicerces Teciduais/química , Adulto , Reatores Biológicos , Células Cultivadas , Microambiente Celular , Colágeno/metabolismo , Portadores de Fármacos/química , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Nanopartículas/química
17.
Methods Mol Biol ; 2145: 185-196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542608

RESUMO

Chemotaxis plays a pivotal role in crucial biological phenomena including immune response, cancer metastasis, and wound healing. Although many chemotaxis assays have been developed to better understand these multicomplex biological mechanisms, most of them have serious limitations mainly due to the poor representation of native three-dimensional (3D) microenvironment. Here, we describe a method to develop and validate a novel 3D in vitro chemotaxis model to study the migration of corneal fibroblasts through a stromal equivalent. A hydrogel was used that contained gelatin microspheres loaded with platelet-derived growth factor-BB (PDGF-BB) in the inner section and corneal fibroblasts in the outer section. The cell migration toward the chemical stimuli over time can be monitored via confocal microscopy. The development of this in vitro model can be used for both qualitative and quantitative examinations of chemotaxis.


Assuntos
Becaplermina/genética , Córnea/crescimento & desenvolvimento , Substância Própria/crescimento & desenvolvimento , Modelos Moleculares , Movimento Celular/genética , Quimiotaxia/genética , Córnea/patologia , Substância Própria/metabolismo , Fibroblastos/metabolismo , Humanos , Cicatrização/genética
18.
Bioengineering (Basel) ; 6(4)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847117

RESUMO

The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.

19.
Acta Biomater ; 77: 142-154, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126590

RESUMO

Many steps are required to generate bone through endochondral ossification with adipose mesenchymal stromal cells (ASC), from cell isolation to in vitro monolayer expansion, seeding into scaffolds, cartilaginous differentiation and in vivo remodeling. Moreover, monolayer expansion and passaging of ASC strongly decreases their differentiation potential. Here, we propose that adipose tissue itself can be used as scaffold for ASC expansion and endochondral ossification. Human liposuctions were fractionated and cultured for 3 weeks with proliferative medium in suspension. The resulting constructs, named Adiscaf, were compared to constructs generated with a previously developed, control approach, i.e. collagen sponges seeded with monolayer-expanded ASC. After 4 weeks of chondrogenic differentiation, Adiscaf contained cartilage tissue, characterized by glycosaminoglycans and collagen type II. After 2 additional weeks of hypertrophic differentiation, Adiscaf showed upregulation of hypertrophic markers at the gene expression and protein levels. After 8 weeks of in vivo implantation, Adiscaf resulted in ectopic bone tissue formation, including bone marrow elements. Adiscaf showed superior in vitro differentiation and in vivo performance as compared to the control paradigm involving isolation and monolayer expansion of ASC. This new paradigm exploits the physiological niche of adipose tissue and strongly suggests a higher functionality of cells inside adipose tissue after in vitro expansion. This study demonstrates that adult human adipose tissue used as a native construct can generate a bone organ by endochondral ossification. The concept could be exploited for the generation of osteogenic grafts for bone repair. STATEMENT OF SIGNIFICANCE: In this study we used adult human adipose tissue as scaffolding materials (called Adiscaf) to generate a bone organ by endochondral ossification. Adiscaf concept is based on the culture of adipose tissue cells inside their native microenvironment for the generation of osteogenic grafts for bone repair. This simplified approach overcomes several limitations linked to the current techniques in bone tissue engineering, such as isolation of cells and inadequate properties of the biomaterials used as scaffolds. In addition, the present paradigm proposes to exploit physiological niches in order to better maintain the functionality of cells during their in vitro expansion. This project not only has a scientific impact by evaluating the impact of native physiological niches on the functionality and chondrogenic differentiation of mesenchymal progenitors but also a clinical impact to generate osteogenic grafts and/or osteoinductive materials for bone regeneration and repair.


Assuntos
Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Regeneração Óssea , Células-Tronco Mesenquimais/citologia , Osteogênese , Idoso , Animais , Substitutos Ósseos , Transplante Ósseo , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Condrócitos/citologia , Condrogênese/genética , Colágeno/química , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lipectomia , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Microtomografia por Raio-X
20.
J Tissue Eng Regen Med ; 12(4): e1936-e1949, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29222846

RESUMO

Because cell interactions play a fundamental role for cell differentiation, we investigated the expression of Pannexin 1 and Pannexin 3 in human bone marrow mesenchymal stromal cells (HBMSCs) in a three-dimensional (3D) microenvironment provided by a polysaccharide-based macroporous scaffold. The pannexin (Panx) family consists of three members, Panx1, Panx2, and Panx3. The roles of Panx large-pore ion and metabolite channels are recognized in many physiological and pathophysiological scenarios, but the role of these proteins in human physiological processes is still under investigation. Our study demonstrates that HBMSCs cultured within 3D scaffolds have induced Panx1 and Panx3 expression, compared with two-dimensional culture and that the Panx3 gene expression profile correlates with those of bone markers on mesenchymal stromal cells culture into the 3D scaffold. We showed that Panx1 is involved in the HBMSCs 3D cell-cell organization, as acting on the size of cellular aggregates, demonstrated by the use of Probenecid and the mimetic peptide 10panx1 as specific inhibitors. Inhibition of Panx3 using siRNA strategy shows to reduce the expression of osteocalcin as osteoblast-specific marker by HBMSCs cultured in 3D conditions, suggesting a role of this Panx in osteogenesis. Moreover, we evaluated Panx1 and Panx3 expression within the cellularized scaffolds upon subcutaneous implantation in NOG (NOD/Shi-scid/IL-2Rγnull ) mice, where we could observe a more intense expression in the constructs than in the surrounding tissues in vivo. This study provides new insights on the expression of pannexins in HBMSCs on a 3D microenvironment during the osteogenic differentiation, in vitro and in vivo.


Assuntos
Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Conexinas/biossíntese , Dextranos/química , Glucanos/química , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Xenoenxertos , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA