Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 113(1): 241-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26152452

RESUMO

The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA's initiative to replicate and replace chronic and acute drug testing in animals. For this purpose, we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip, using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic) and urea excretion (detoxification) were observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies.


Assuntos
Fígado/fisiologia , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Fatores de Tempo
2.
Front Immunol ; 12: 781337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925361

RESUMO

Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity of cancers, so that new therapeutic approaches are urgently needed. Among novel alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer treatment in recent years. The limited clinical applications of ACT, despite its advantages over standard-of-care therapies, can be attributed to (i) time-consuming and cost-intensive procedures to screen for potent anti-tumor immune cells and the corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the safety assessment of ACT. Suitable experimental models and testing platforms have the potential to accelerate the development of ACT. Immunocompetent microphysiological systems (iMPS) are microfluidic platforms that enable complex interactions of advanced tissue models with different immune cell types, bridging the gap between in-vitro and in-vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and human-derived natural killer (NK) cells in the same microfluidic network. Different aspects of tumor-NK cell interactions were characterized using this iMPS including: (i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived chemokines and cytokines, indicating crosstalk and development of an inflammatory milieu. While viability and morphological integrity of cardiac microtissues remained mostly unaffected, we were able to detect alterations in their beating behavior, which shows the potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.


Assuntos
Bioensaio/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos , Imunoterapia Adotiva , Células Matadoras Naturais/transplante , Neoplasias/terapia , Bioensaio/instrumentação , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Linhagem Celular , Separação Celular , Feminino , Sangue Fetal , Voluntários Saudáveis , Humanos , Células-Tronco Pluripotentes Induzidas , Microscopia Intravital , Células Matadoras Naturais/imunologia , Dispositivos Lab-On-A-Chip , Masculino , Miócitos Cardíacos , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Estudo de Prova de Conceito
3.
SLAS Technol ; 25(2): 111-122, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31561747

RESUMO

The future of the life sciences is linked to automation and microfluidics. As robots start working side by side with scientists, robotic automation of microfluidics in general, and droplet microfluidics in particular, will significantly extend and accelerate the life sciences. Here, we demonstrate the automation of droplet microfluidics using an inexpensive liquid-handling robot to produce human scaffold-free cell spheroids at high throughput. We use pipette actuation and interface the pipetting tip with a droplet-generating microfluidic device. In this device, we produce highly monodisperse droplets with a diameter coefficient of variation (CV) lower than 2%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard labware containers at a throughput of 85,000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high throughout the process and decreases by >10% (depending on the cell line used) after a 16 h incubation period in nanoliter droplets and automated recovery. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single-cell cultures, but assembly methods for spheroids (e.g., hanging drop microplates) have limited throughput. The increased throughput and decreased cost of our method enable spheroid production at the scale needed for lead discovery drug screening, and approach the cost at which these microtissues could be used as building blocks for organ-scale regenerative medicine.


Assuntos
Microfluídica/métodos , Esferoides Celulares/citologia , Automação , Sobrevivência Celular , Células HEK293 , Humanos , Membranas Artificiais , Politetrafluoretileno/química , Impressão Tridimensional
4.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327491

RESUMO

The miR-221 expression is dependent on the oncogenic RAS-RAF-MEK pathway activation and influences epithelial-to-mesenchymal transition (EMT). The Cancer Genome Atlas (TCGA) database analysis showed high gene significance for ZEB1 with EMT module analysis and miR-221 overexpression within the triple-negative breast cancer (TNBC) and HER2+ subgroups when compared to luminal A/B subgroups. EMT marker expression analysis after MEK1 (TAK-733) inhibitor treatment and irradiation was combined with miR-221 and ZEB1 expression analysis. The interaction of miR-221 overexpression with irradiation and its influence on migration, proliferation, colony formation and subsequent EMT target activation were investigated. The results revealed that MEK1 inhibitor treatment combined with irradiation could decrease the migratory potential of breast cancer cells including reduction of miR-221 and corresponding downstream ZEB1 (EMT) marker expression. The clonogenic survival assays revealed that miR-221 overexpressing SKBR3 cells were more radioresistant when compared to the control. Remarkably, the effect of miR-221 overexpression on migration in highly proliferative and highly HER2-positive SKBR3 cells remained constant even upon 8 Gy irradiation. Further, in naturally miR-221-overexpressing MDA-MB-231 cells, the proliferation and migration significantly decrease after miR-221 knockdown. This leads to the assumption that radiation alone is not reducing migration capacity of miR-221-overexpressing cells and that additional factors play an important role in this context. The miR-221/ZEB1 activity is efficiently targeted upon MEK1 inhibitor (TAK-733) treatment and when combined with irradiation treatment, significant reduction in migration of breast cancer cells was shown.

5.
Methods Mol Biol ; 1894: 47-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30547454

RESUMO

The liver is the principal detoxification center of the body, removing xenobiotics and waste products which could potentially include some nanomaterials (NM). With the ever increasing public and occupational exposure associated with accumulative production of nanomaterials, there is an urgent need to consider the possibility of harmful health consequences of engineered NM exposure. It is understood that following exposure via inhalation, ingestion, or direct intravenous injection a fraction of NMs reach the liver. Traditional in vitro or ex vivo hepatic nanotoxicology models are often limiting and/or troublesome (i.e., reduced metabolism enzymes, lacking important cell populations, unstable with very high variability, etc.). This chapter highlights a methodology for the preparation of a physiologically relevant 3D human liver microtissue model which addresses most of the negative issues associated with the models used in traditional in vitro hepatic toxicological investigations. The spheroids are a very promising model for the assessment of the toxicological effects associated with engineered NM exposure.


Assuntos
Técnicas de Cultura de Células/métodos , Fígado/metabolismo , Nanoestruturas/toxicidade , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Hepatócitos , Humanos , Esferoides Celulares , Testes de Toxicidade/métodos
6.
Acta Biomater ; 49: 152-166, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27916739

RESUMO

Many of the existing three-dimensional (3D) cancer models in vitro fail to represent the entire complex tumor microenvironment composed of cells and extra cellular matrix (ECM) and do not allow a reliable study of the tumoral features and progression. In this paper we reported a strategy to produce 3D in vitro microtissues of pancreatic ductal adenocarcinoma (PDAC) for studying the desmoplastic reaction activated by the stroma-cancer crosstalk. Human PDAC microtissues were obtained by co-culturing pancreatic cancer cells (PT45) and normal or cancer-associated fibroblasts within biodegradable microcarriers in a spinner flask bioreactor. Morphological and histological analyses highlighted that the presence of fibroblasts resulted in the deposition of a stromal matrix rich in collagen leading to the formation of tumor microtissues composed of a heterotypic cell population embedded in their own ECM. We analyzed the modulation of expression of ECM genes and proteins and found that when fibroblasts were co-cultured with PT45, they acquired a myofibroblast phenotype and expressed the desmoplastic reaction markers. This PDAC microtissue, closely recapitulating key PDAC microenvironment characteristics, provides a valuable tool to elucidate the complex stroma-cancer interrelationship and could be used in a future perspective as a testing platform for anticancer drugs in tissue-on-chip technology. STATEMENT OF SIGNIFICANCE: Tumor microenvironment is extremely complex and its organization is due to the interaction between different kind of cells and the extracellular matrix. Tissue engineering could give the answer to the increasing need of 3D culture model that better recapitulate the tumor features at cellular and extracellular level. We aimed in this work at developing a microtissue tumor model by mean of seeding together cancer cells and fibroblasts on gelatin microsphere in order to monitor the crosstalk between the two cell populations and the endogenous extracellular matrix deposition. Results are of particular interest because of the need of heterotypic cancer model that can replicate the complexity of the tumor microenvironment and could be used as drug screening platform.


Assuntos
Bioengenharia/métodos , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/metabolismo , Ciclo Celular/genética , Regulação para Baixo/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Metaloproteinases da Matriz/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Software
7.
Cancer Med ; 5(4): 703-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763588

RESUMO

A 3D microtissues using T47D and JIMT-1 cells were generated to analyze tissue-like response of breast cancer cells after combined human epidermal growth factor receptor 2 (HER2)-targeted treatment and radiation. Following lentiviral knockdown of HER2, we compared growth rate alterations using 2D monolayers, 3D microtissues, and mouse xenografts. Additionally, to model combined therapeutic strategies, we treated HER2-depleted T47D cells and 3D microtissues using trastuzumab (anti-HER2 antibody) in combination with irradiation. Comparison of HER2 knockdown with corresponding controls revealed growth impairment due to HER2 knockdown in T47D 2D monolayers, 3D microtissues, and xenografts (after 2, 12, and ≥40 days, respectively). In contrast, HER2 knockdown was less effective in inhibiting growth of trastuzumab-resistant JIMT-1 cells in vitro and in vivo. Combined administration of trastuzumab and radiation treatment was also analyzed using T47D 3D microtissues. Administration of both, radiation (5 Gy) and trastuzumab, significantly enhanced the growth inhibiting effect in 3D microtissues. To improve the predictive power of potential drugs--as single agents or in combination--here, we show that regarding tumor growth analyses, 3D microtissues are highly comparable to outcomes derived from xenografts. Considering increased limitations for animal experiments on the one hand and strong need of novel drugs on the other hand, it is indispensable to include highly reproducible 3D microtissue platform in preclinical analyses to validate more accurately the capacity of future drug-combined radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Avaliação Pré-Clínica de Medicamentos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Radiação , Receptor ErbB-2/deficiência , Técnicas de Cultura de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA